
Data cleaning and preparation (Basics)
Prof. Dr. Axel Polleres

Dr. Stefan Sobernig
Dr. Jürgen Umbrich

Oct 15, 2018

Unit3

Unit3
Data cleaning and preparation:

Data inspection (structure, interpretation)
Data transformation (incl. reshaping)
Data scanning (incl. sniffing)
Data filtering
Data sorting
Data aggregation:

groupinga.
descriptive statisticsb.

"Bread and Butter" for data scientists...

Cleaning & preparation
Importance of cleaning & preparation follows from answering:

How to describe datasets (data structure and data semantics)?
What are common anomalies in datasets?
How to best reshape the data to facilitate analysis?
(How computationally expensive are the underlying procedures (transformation, filtering, sorting)?)
(How scalable are the underlying procedures to really large datasets?)

This is where most of the effort in data-science projects is spent, repeatedly (+80%)

Cleaning & preparation

Question.Question.

Discuss: How would you describe the following two synthetic data sets?Discuss: How would you describe the following two synthetic data sets?

layout?layout?

rows?rows?

columns?columns?

1 of 13

cellscells

labels?labels?

Running example: EUROSTAT Urban audit
Demographic data on European cities taken from EUROSTAT (1990-2016).
Read more at Urban Audit (Navigate the database)
TSV at ./data/urb_cpop1.tsv list of European cities (city/country), population counts, and demographic indicators (gender, age groups).

Question.Question.

How do you inspect this dataset? How do you characterize this dataset? What do we see when we look at this dataset?How do you inspect this dataset? How do you characterize this dataset? What do we see when we look at this dataset?

Right questions at the right time
Questions we could ask right now:

Which one is the biggest city?1.
What are the (most recent) populations per country?2.
Which ones are the 10 biggest cities?3.
What was the population of the city with the code AT004C1 in 2014?4.
What was the population of the city named "Innsbruck" in 2015?5.
...6.

... , but we don't go there just yet

Interpretation of the data structure (1)
Consider first the following key notions:

Dataset: Collection of values which describe data objects (e.g., units of observation) according to certain variables (a.k.a. attributes).
Values can be numeric ("numbers") or categorical ("strings").
Variables holding numeric values on data objects are quantitative variables.
Variables holding categorical values on data objects are qualitative variables.
Values are mapped to variables (attributes) of a data object via a (measurement) scale.

numeric values: interval, ratio
categorical values: nominal, ordinal

Interpretation of the data structure (2)
Therefore, values are organized in two ways:

Every value belongs to a variable and a data object (observation)
A data object (observation) contains all values measured on the same unit of observation across all variables.

Variables can be further discriminated by their roles in the analysis:
fixed variables ("dimensions"), in particular: identifier variables
measured variables
derived variables (e.g., mediators)

Interpretation of the data structure (3)

2 of 13

Six observations
Three variables: person, treatment, result
18 values (6 times 3)
Person: nominal, fixed (identifier), three possible values
Treatment: nominal, fixed (identifier), two possible values (a, b)
Result: interval, measured, six possible values (incl. missing value, NA)

Running example: EUROSTAT Urban Audit

Running example: EUROSTAT Urban Audit

Question.Question.

How would you describe the Urban Audit dataset using these key notions?How would you describe the Urban Audit dataset using these key notions?

indic_ur,cities\time -> AT,DE1001V, AT001C1,DE1001V
Indicators such as "population" use particular codes, e.g. DE1001V stands for "Population on the 1st of January, total"a.

indicator codes area available as another CSV at ./data/indic_ur.csv
Cities use particular codes... The codes are available in another file as RDF or as CSVb.

CSV ./data/cities.csv list of cities incl their codes and names.
Countries use ISO two-letter codes, e.g. available on datahub.ioc.

CSV ./data/iso_3166_2_countries.csv list of countries and country codes.

1.

missing-value notation (NA, ":")2.
-> integers, BUT: 72959 b3.

3 of 13

Data transformation (1): Overview
Data transformation involves:

Modifying values contained by given variables and/ or1.
Adding variables (e.g., taken from previous) and/ or2.
Reshaping the dataset (i.e., its layout)3.

Permitted (value) transformations are indicated by the types of variables.

Data transformation (2): Goals
Datasets ("in the wild") may not be eligible:

to run the intended value checks and value-based operations (e.g., numeric operations)
to reshape the data layout
to proceed with data preparation (scanning, filtering, sorting)

Some examples: When a dataset is consumed from a datasource as raw strings:

it does not allow for number operations (e.g "5"+"5" != "10")
it does not allow for comparison or sorting (e.g. "5" != 5, "11">"2", "2016-10-11" vs "11-10-2016")
it does not allow for splitting & combining variables
it does not allow for combining datasets (e.g., mixed letter cases as in "Wien" vs. "wien")

Data transformation (3): Value types
Let us first take a look at data types and how we can handle them in Python.

Python has the following "built-in", bit-representational ("primitive") datatypes:

Numerical types: int , float, complex
Boolean
String (i.e., sequences of Unicode characters)
(Collections: lists, tuples, dictionaries)

Other (structured) data types:

Date, Datetime
URL

Data transformation (4): Value types
Any (planned) transformation assumes introspection:

 type(variable)
 #e.g.
 >>> type(5)
<class 'int'>

 isinstance(x, t) //returns true if x is of type t, else false
 #e.g.
 >>> isinstance(5, int)
 True

Data transformation (5): Number conversions

 int (x) # Return an integer object constructed from a number or string x
 float (x) # Return a floating point number constructed from a number or string x.

Examples

>>>float(" -12345\n")
-12345.0
>>> int(2.0)
2

4 of 13

Data transformation (6): Truth (boolean) values

bool(x)

Return a Boolean value, i.e. one of True or False. x is converted using the standard truth testing procedure

>>>bool(0)
False
>>>bool(10)
True

Data transformation (7): Truth-value checks
Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean operations below. The following values are considered false:

None
False
zero of any numeric type, for example, 0, 0.0, 0j.
any empty sequence, for example, '', (), [].
any empty mapping, for example, {}.
instances of user-defined classes, if the class defines a __bool__() or __len__() method, when that method returns the integer zero or bool value False. [1]

All other values are considered true — so objects of many types are always true.

Data transformation (7): Date/ datetime values
Python offers with several options (modules) to deal and work with dates and datetime information, allowing for parsing, converting, comparing, and manipulating dates and times
Official module

Available datetime types:

date (year, month day)
time (hour, minute, second, microsecond)
datetime (year, month, day, hour, minute, second, microsecond)
timedelta: A duration expressing the difference between two date, time, or datetime
tzinfo: dealing with time zones
timezone: dealing with time zones

Data transformation (8): Date/ datetime values
The datetime.strptime() class method creates a datetime object from

a string representing a datetime and from
a corresponding format string

>>> from datetime import datetime
>>> text = '2012-09-20'
>>> datetime.strptime(text, '%Y-%m-%d')
datetime.datetime(2012, 9, 20, 0, 0)

See the online documentation for a full list of variables for the string format

Data transformation (9): Date/ datetime values
The standard datetime Python module does not automatically detect and parse date/time strings and still requires to manually provide the format/ pattern string.

Options with (some) auto-detection:

dateparser provides modules to easily parse localized dates in almost any string formats commonly found on web pages.

>>> import dateparser
>>> dateparser.parse('12/12/12')
datetime.datetime(2012, 12, 12, 0, 0)

5 of 13

The dateutil module provides powerful extensions to the standard datetime module, available in Python.

>>> from dateutil.parser import parse
>>> parse("Today is January 1, 2047 at 8:21:00AM", fuzzy_with_tokens=True)
(datetime.datetime(2011, 1, 1, 8, 21), (u'Today is ', u' ', u'at '))

Notice.Notice.

!!Careful, such libraries might not necessarily detect the correct format but they cover properly 90% of all common cases.!!Careful, such libraries might not necessarily detect the correct format but they cover properly 90% of all common cases.

Data transformation (10): String manipulation
Converting (unicode) strings to some other value type is important to prepare and clean e.g. quantitative variables.
Sometimes, transformations between strings is a preparatory step to a succesful type conversion.
Commonly, strings themselves are the needed value representation (e.g., in qualitative variables), but:

... they are not in the right or in an ambivalent format, e.g.:
"100,50": comma as the decimal mark, octal strings, etc.
"16-11-11" -> year-month-day vs, day-month-year ?

... they contain (intended or unintended) artifacts
unintended: leading and trailing whitespace
intended: super- or subscripts (e.g., from presentation data)

To clean up such strings, we need string manipulation methods

Data transformation (11): String manipulation
Python provides several functions to do to manipulate strings at the per-character level:

functions to convert strings to upper or lower case
strip() to remove leading and ending whitespaces
slicing return a substring given one or two indices
split() to split strings given a "delimiter"
replace(o,r) to replace the occurrences of o with r

Mind the examples of assignment 1

For more functions, please see the official documentation for str objects

Data transformation (12): String slicing

Problem.Problem.

How to "split" strings, or extract substrings? For instance, "AT,DE1001V" -> AT and DE1001VHow to "split" strings, or extract substrings? For instance, "AT,DE1001V" -> AT and DE1001V

Use [# : #] to get set of letter
word[0] #get one char of the word
word[0:3] #get the first three char
word[-3:] #get the last three char

Keep in mind that python, as many other languages, starts to count from 0!!

>>> word="AT,DE1001V"
>>> print(word[3:11])
DE1001V

Data transformation (13): String slicing
Some useful helper functions for dealing with strings and to find "index positions"

>>> word = "Data Processing"
>>> print(word.count('a')) # count how many times l is in the string
2
>>> print(word.find("D")) # find the word H in the string
0
>>> print(word.index("Data")) # find the letters World in the string
0
>>> print(word.index("Pro"))
5
>>> print(len("Data"))
4

6 of 13

>>> word="AT,DE1001V"
>>> print(word[3:3+len("DE1001V")])
DE1001V

Data transformation (14): Substring search/replace

str.replace(old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument count is given, only the first count occurrences are replaced.

>>>word="Data Processing"
>>>word.replace('Processing', 'Science')
Data Science

>>> float("100,50".replace(",","."))
100.50
//while
>>>float("100,50")
ValueError: could not convert string to float: '100,50'

Data transformation (15): Testing for character classes

word = "Data Processing"
word.isalnum() #check if all char are alphanumeric
word.isalpha() #check if all char in the string are alphabetic
word.isdigit() #test if string contains digits
word.istitle() #test if string contains title words
word.isupper() #test if string contains upper case
word.islower() #test if string contains lower case
word.isspace() #test if string contains spaces
word.endswith('g') #test if string endswith a g
word.startswith('D') #test if string startswith D

Data transformation (15): Reshaping
Reshaping can involve stacking or unstacking a dataset:

Stacking (melting): Turning columns into rows; typically for processing and analysis.
Unstacking: Turning rows into columns; typically for presentation.

A "tidy dataset":https://vimeo.com/33727555 is one in which the abstract interpretation of a dataset (value, variable, observation) is reflected 1:1 by its structure.
Each variable forms a column.
Each observation forms a row.
Each type of data object (observation unit) forms a separate table.

Data transformation (16): Reshaping

7 of 13

Data transformation (17): Reshaping

Question.Question.

Discuss: Is the Urban Audit dataset tidy or messy?Discuss: Is the Urban Audit dataset tidy or messy?

Data transformation (18): Reshaping
Messy datasets result from violating these three main rules in different ways, for example:

Column headers (labels) denote values, not variable names;
Multiple variables are stored in one column;
Variables are stored both in rows and columns;
Multiple types of data objects are stored in the same dataset (e.g., regions and cities across years);
A single observational unit is stored in multiple datasets (e.g., split sets by country);

Data scanning (1)
Scanning involves reading-in and processing a dataset in piecemeal manner, e.g.:

row by row (in a messy dataset)
observation by observation (in a tidy dataset)
column by column (in a messy dataset)
variable by variable (in a tidy dataset)
value by value (per row/column, per observation/variable)

Python example ("row by row"):

with open('./data/urb_cpop1.tsv', 'r') as f:
 rows = f.readlines()
 for eachRow in rows:
 print(eachRow)

Data scanning (2)
For a given dimension (e.g., rows), scanning may be used to inspect on:

8 of 13

the "head" of a dataset
the "tail" of a dataset
a "sample" (subset, slice) of a dataset

random vs. non-random
ordered vs. unordered

Data sniffing
Sniffing involves detecting in a guided, semi-automated manner:

Details of a dataset layout, in particular:
headers
row labels
column separators
dimensions

The data types of column values, e.g.:
Are columns homogeneous or heterogeneous?
Auto-detection of datetime formats

Sniffing requires means of data scanning

Data filtering (1)
Filtering: Removing or subsetting data objects (observations) based on a filter condition.
Filtering can be considered as a conditional scanning.

Data filtering (2): Python basics

#filter out negative values
L=[0,1,2,-1,4,-6]
Lfiltered=[]
for i in L:
 if i>0:
 Lfiltered.append(i)
#another way to filter lists is to use list comprehension
Lfiltered=[i for i in L if i>0] #same as above

Data filtering (3): Python basics

#filter out negative values
L=[['a',0],['b',1],['c',2],['d',-1],['e',4],['f',-6]]
Lfiltered=[]
for i in L:
 if i[1]>0:
 Lfiltered.append(i)
#another way to filter list is to use list comprehension
Lfiltered=[i for i in L if i[1]>0] #same as above

Data filtering (4): Python basics
Dictionaries:

#filter out negative values
L=[{'a':0},{'b':1},{'c':2},{'d':-1},{'e':4},{'f':-6}]
Lfiltered=[]
for d in L:
 for k,v in d.items():
 if v>0:
 Lfiltered.append(d)
comprehension alternative
[i for i in L for k,v in i.items() if v > 0]

9 of 13

Data filtering (5): Applications
Data filtering has many applications:

"search" can be seen as filtering1.
focusing on only the relevant parts of the data2.
eliminating unnecessary content (e.g., removing unwanted data-object types in reshaping)3.
removing content which cannot be processed (e.g., structurally missing values)4.
reducing amount of data to to be processed at once, per job5.

(chunking data)

Data filtering (6): Urban-audit dataset
Recall: We got multiple variables in the dataset.
Task: Reduce it to one measure variable (population count)

Observe: indicator-identifier,2-letter-ISO-country-code in the first columna.
The identifier for population-count variable is DE1001Vb.

Modify the scanning previous example to include a (filter) condition:

with open('./data/urb_cpop1.tsv', 'r') as f:
 rows = f.readlines()
 for eachRow in rows:
 # only output those lines containing a trailing 'DE1001V'
 colEnd = eachRow.find('\t')
 if (eachRow[colEnd-7:colEnd] == 'DE1001V') :
 print(eachRow)

Question.Question.

How could this be further improved?How could this be further improved?

Observe: The indicators in the file Observe: The indicators in the file urb_cpop1.tsvurb_cpop1.tsv are are sortedsorted and and DE1001VDE1001V are the first indicators appearing! are the first indicators appearing!

It is important to inspect the data before processing it!It is important to inspect the data before processing it!

Data filtering (7): Costs

Question.Question.

How expensive is it to do filtering?How expensive is it to do filtering?

For every filtering operation you need to do one scan...
... but several conjunctive filtering conditions can be combined (keyword: and) in one scan
... sometimes (e.g when file is sorted, or when you search only for a single result) you can stop before having to scan the whole file!

Data sorting (1)
Sorting: Changing the order of data objects (observations) depending on the ordinal values of one or several of their variables (attributes).
In-place sorting: Python lists have a built-in list.sort() method that modifies the list in-place.
Out-place sorting: There is also a sorted() built-in function that builds a new sorted list from an iterable.
See also the official documentation

Data sorting (2): Basics

sorted([5, 2, 3, 1, 4])
[1, 2, 3, 4, 5]
the parameter 'reverse' can be set for descending order:
sorted([5, 2, 3, 1, 4], reverse = True)
[5, 4, 3, 2, 1]

a = [5, 2, 3, 1, 4]

10 of 13

a.sort()
a

Data sorting (3): List of lists

l = [[0, 1, 'f'], [4, 2, 't'], [9, 4, 'afsd']]
l.sort(key=lambda x: x[2])
print(l)
[[9, 4, 'afsd'], [0, 1, 'f'], [4, 2, 't']]

Data sorting (4): Dictionaries by key
Note that dictionaries are typically unordered.
So the output dictionary must be an order-preserving one: OrderedDict

orig = {2: 3, 1: 89, 4: 5, 3: 0}

import OrderedDict from collections
out = OrderedDict(sorted(orig.items(), key=lambda t: t[0]))
print(out)

Data sorting (5): Dictionaries by value

orig = {"aa": 3, "bb": 4, "cc": 2, "dd": 1}
from collections import OrderedDict
out = OrderedDict(sorted(orig.items(), key=lambda t: t[1]))
print(out)

Data sorting (6): List of tuples

student_tuples = [
 ('john', 'A', 15),
 ('jane', 'B', 12),
 ('dave', 'B', 10),
]
sorted(student_tuples, key=lambda student: student[2]) # sort by age
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

Data filtering and sorting: EUROSTAT Urban Audit

Question.Question.

Discussion: Which of the following problems needs filtering? Which one needs sorting?Discussion: Which of the following problems needs filtering? Which one needs sorting?

Which one is the biggest city?1.
What are the (most recent) populations per country?2.
Which ones are the 10 biggest cities?3.
What was the population of the city with the code AT004C1 in 2014?4.
What was the population of the city named "Innsbruck" in 2015?5.
How many cities per country does that dataset contain?6.
Which country/ies has the most cities listed?7.
Which city/ies grew fastest over the past 10 years?8.

11 of 13

Data aggregation (1)
Aggregation: Collapsing multiple values into a single value by

grouping values by certain variables or variable levelsa.
computing aggregates of the so formed value groups.b.

Objective:
Compress datasets to allow more expensive analysis steps (less memory or processing time)
Change in scope or in scale of the analysis, by presenting a high-level view on a dataset
Data aggregates are more stable than individual observations (prediction, variance).

There are several ways to group items in Python.
use a dictionary (esp. defaultdicta.
(use itertools groupby)b.
(pandas)c.

Data aggregation (2): Dictionary-based grouping

data = [
['Vienna','Austria',11,12,13], ['Salzburg','Austria',12,22,23],
['Stuttgart','Germany',12,22,23], ['Berlin','Germany',12,22,23],
['Paris','France',12,22,23]
]

verbose tactic
groupby={}
for item in data:
 group=item[1]
 if group not in groupby:
 groupby[group]=[]
 groupby[group].append(item)

print(groupby)

more compact tactic
from collections import defaultdict
groupby = defaultdict(list)
for row in data:
 groupby[row[1]].append(row)

Data aggregation (3): Dictionary-based grouping

Austria
[['Vienna', 'Austria', 11, 12, 13], ['Salzburg', 'Austria', 12, 22, 23]]
Germany
[['Stuttgart', 'Germany', 12, 22, 23], ['Berlin', 'Germany', 12, 22, 23]]
France
[['Paris', 'France', 12, 22, 23]]

Data aggregation (4): Dictionary-based grouping

data = [("animal", "bear"), ("animal", "duck"), ("plant", "cactus"), ("vehicle", "speed boat"), ("vehicle", "school bus")]

from collections import defaultdict
groupby = defaultdict(list)
for row in data:
 groupby[row[0]].append(row[1])

print(groupby.items())
for key, values in groupby.items():
 for thing in values:
 print("A "+thing+" is a "+key)
 print(" ")

A bear is a animal.
A duck is a animal.

A cactus is a plant.

A speed boat is a vehicle.
A school bus is a vehicle.

Data aggregation (5): Computing groupwise aggregates
Typical tasks you want to do on lists or on groups: provide summary descriptors (statistics).
The kind of summary descriptor computable depends on the variable type (quantitative, qualitative)
Frequency: Counting the elements contained by a group (qualitative variables; absolute/ relative)

12 of 13

Mode: The value of the highest frequency (qualitative variables)
Location: mean and median (quantitative variables)
Spread: range and variance (quantitative variables)

Data aggregation (6): Computing groupwise aggregates

quant = [['a', 5], ['a', 1], ['b', 1], ['a', 2], ['b',3], ['b',1], ['a',4]]

from collections import defaultdict
groupby = defaultdict(list)
for row in quant:
 groupby[row[0]].append(row[1])
print(groupby.items())

element count (group size)
{i: len(v) for i,v in groupby.items()}
sum
{i: sum(v) for i,v in groupby.items()}
location:
from statistics import mean
{i: mean(v) for i,v in groupby.items()}
from statistics import median
{i: median(v) for i,v in groupby.items()}

Data aggregation (6): Computing groupwise aggregates

qual = ['a', 'c', 'a', 'c', 'b', 'e', 'a', 'c', 'b', 'e','b', 'e', 'a', 'd']

frequency (absolute)
from collections import defaultdict
freq = defaultdict(int)
for el in qual:
 freq[el] += 1

frequency (relative)
print({i: v/len(qual) for i,v in freq.items()})

References
Pang-Ning Tan, Michael Steinbach, Vipin Kumar (2006): "Introduction to Data Mining", Chapter 2: "Data", Pearson.
Hadley Wickham (2014): "Tidy data", The Journal of Statistical Software (59), DOI: 10.18637/jss.v059.i10

13 of 13

