
Advanced topics
Dr. Stefan Sobernig
Dr. Anniko Hannak

Oct 30, 2018

Unit 6: Advanced topics
Basic analysis of algorithms: The Big O
Visualization primer: matplotlib, pandas
(Library support):

Low-level libraries: numpy, scipy
High-level libraries: pandas (cont'd)
Plotting (cont'd): seaborn, bokeh
Parsing

Slides: This unit is also available in a PDF format and as a single HTML Page

Readings:

Grus, J. (2015) Data Science from Scratch, O'Reilley, Chapter 3 (available via the
WU library, EBSCO)

Analysis of algorithms (1)
We encountered many different computational procedures (algorithms) for different
purposes in data processing throughout Units 1 to 5, e.g.:

Data filtering
Data sorting
Data sampling
Deduplication (blocking, windowing)

Why do we want to describe the complexity of these procedures (or, the underlying
algorithms)?
How can we describe the their complexity: space vs. time complexity?

Analysis of algorithms (2)
Studying the complexity of a computation (procedure, algorithm) involves quantifying
and describing ...

... the diffuclty of solving a computational problem (e.g., sorting)

... in terms of the required computational resources:
running time of a computation
memory ("space") consumed by a computation

Note: There can be a fundamental trade-off between running time
and memory consumption.
Our take: Time complexity of basic opterations in (Python) data processing.

Analysis of algorithms (3)
How fast does the (running/ execution) time required by an operation grow as the size
of the problem increases in the worst case?
"Size of a problem" (), eg.: number of elements in a list or array, number of rows in a
DataFrame.
"time required" (): a function of N, i.e.,
When this function grows rapidly, an operation (algorithm) will become unusable
the larger .
When this function grows slowly, an operation (algorithm) will remain usable
even at larger .

Analysis of algorithms (4): Types of growth
Commonly found types of time growth for some input n:

: Time required is constant, independent of (e.g., hash searching).
: Doubling increases the required time by a constant amount

(logarithmic: binary search).
: Required time grows linearly with problem size (linear search in -element

list)
: Doubling increases the required time by more than a double

(merge sort, Python's timsort).
, : Doubling results in a four-/ eight-fold increase in the

required time (simple sorting, matrix multiplication)
: Doubling the problem size squares the time required (a.k.a. exponential

growth).

Analysis of algorithms (5): Big O(rder) notation
Often, when planning data-processing steps, we want to compare two or available
operations (e.g., search strategies).
Objective: Comparison based on their relative time complexities or growth rates:
vs. .
"Strictness" of comparison, e.g., "equal or less than", "same as".
Big O(rder): iff is smaller than some constant multiple of (i.e.,
 is of smaller or equal order than).

Example: vs. vs.

Analysis of algorithms (6): Big O(rder) notation

n

f f (n)
f (n)

n
f (n)

n

f (n) = 1 n
f (n) = log(n) n

f (n) = n n

f (n) = n ∗ log(n) n

f (n) = n2 f (n) = n3 n

f (n) = cn

f (n)
g(n)

g ∈ O(f) |g(x)| |f (x)|
f g

n2 (+ 2n + 3)n2 2n

Analysis of algorithms (7): Urban Audit example

Question.Question.

How could we sort it by a different column? e.g., how could we sortHow could we sort it by a different column? e.g., how could we sort
countries by population?countries by population?

Let's look at the excerpts from the following notebook

haystack = [('BE', 10839905),
 ('BG', 7563710),
 ('CZ', 10532770),
 ('DE', 81802257),
 ('EE', 1365275),
 ('ES', 47021031),
 ('FR', 64611814),
 ('IT', 60340328),
 ('CY', 819100),
 ('HU', 10014324),
 ('NL', 16574989),
 ('PL', 38529866),
 ('PT', 10573479),
 ('RO', 22480599),
 ('SK', 5435273),
 ('FI', 5351427),
 ('SE', 9415570),
 ('NO', 4858199),
 ('CH', 7877571)]
haystack.sort() # by country code
haystack.sort(key=lambda x:x[1]) # by population count

Analysis of algorithms (8): Urban Audit (cont'd)
Note: if you know that a file is sorted, then searching in that file becomes easier/cheaper!

Question.Question.

"Find me a country with a population above 5000000 people?"‚"Find me a country with a population above 5000000 people?"‚

What is the growth rate of the quickest searching algorithm you canWhat is the growth rate of the quickest searching algorithm you can
think of?think of?

What if you have the cities and populations already in a sorted list?What if you have the cities and populations already in a sorted list?

Answer:
Why?
Answer: Binary Search!

Bottomline: (pre-)sorting can be costly, but might speed up other operations... another
example: grouping!

Analysis of algorithms (9): Urban Audit example

O(log n)

Search for first entry bigger than number in a sorted
list of lists of length 2:
def binary_search(number, array, lo, hi):

 if hi < lo: return array[lo] # no more numbers
 mid = (lo + hi) // 2 # midpoint in array
 if number == array[mid][0]:
 return array[mid] # number found here
 elif number < array[mid][0]:
 # try left of here
 return binary_search(number, array, lo, mid - 1)
 else:
 # try above here
 return binary_search(number, array, mid + 1, hi)

Sample call: Find me a country with a pop. > 5m people?
binary_search(5000000, haystack, 0, len(haystack))

Analysis of algorithms (10): Outlook
Python's
sort
applies Timsort: (worst case).
Custom algorithmic recipes for Python 3 (incl. sorting algorithms):
http://python3.codes/.
Sampling: probability-based sampling (pandas)
Deduplication: total complexity of

Blocking: with block size
Windowing: with window size

Visualization (1)
Visualizations can support a number of data-processing activities (before analysis):

Outlier detection (e.g., barplots)
Grouping and summary descriptions (e.g., barplots)
Reduction of dimensions (e.g., scatterplots).

See Chapter 3 of "Data Science from Scratch":
matplotlib
pandas wrapper around matplotlib
Notebook

Corresponding code examples:
matplotlib: GitHub.
pandas: "Visualization tutorial":""

Advanced use of visualizations, such as graphical inference, beyond the scope of this
course.

Visualization (2a): Scatterplot

O(n log n)

O()n2

O(n(n/b + log n)) b < n
O(n(w + log n)) w < n

Visualization (2b): Scatterplot

Visualization (3a): Lineplot

Visualization (3b): Lineplot

Visualization (4a): Barplot

Visualization (4b): Barplot

Visualization (5): Boxplot

Low-level libraries
Chardet: Character encoding auto-detection in Python. As smart as your browser.
Open source.
dateutils: The dateutil module provides powerful extensions to the standard datetime
module, available in Python.
Csvkit: csvkit is a suite of command-line tools for converting to and working with CSV,
the king of tabular file formats
Numpy the fundamental package for scientific computing with Python
SciPy is open-source software for mathematics, science, and engineering

Numpy

import numpy as np

Numpy the fundamental package for scientific computing with Python. It contains among
other things:

a powerful N-dimensional array object
sophisticated (broadcasting) functions
tools for integrating C/C++ and Fortran code
useful linear algebra, Fourier transform, and random number capabilities

Check out this tutorial or this one (includes also scipy and matplotlib)

NumPy does not provide high-level data analysis functionality, having an understanding of
NumPy arrays and array-oriented computing will help you use tools like Pandas much more
effectively.

SciPy

SciPy is open-source software for mathematics, science, and engineering

The SciPy library depends on NumPy, which provides convenient and fast N-dimensional
array manipulation. The SciPy library is built to work with NumPy arrays, and provides
many user-friendly and efficient numerical routines , such as routines for numerical
integration and optimization.

SciPy subpackages (1/2)
cluster: Clustering algorithms
constants: Physical and mathematical constants
fftpack Fast Fourier Transform routines
integrate Integration and ordinary differential equation solvers
interpolate Interpolation and smoothing splines
linalg Linear algebra
ndimage N-dimensional image processing

SciPy subpackages (2/2)
odr Orthogonal distance regression
optimize Optimization and root-finding routines
signal Signal processing
sparse Sparse matrices and associated routines
spatial Spatial data structures and algorithms
special Special functions
stats Statistical distributions and functions

from scipy import linalg, optimize

SciPy
Again, check out the official tutorials

Some examples:

Interpolation
Solving linear system, Eigenvalues and eigenvectors
Signal processing
Statistics, random variables, fitting distributions, ..

High-level libraries
Agate: agate is a Python data analysis library that is optimized for humans instead
of machines. It is an alternative to numpy and pandas that solves real-world
problems with readable code.
Pandas: pandas is an open source, BSD-licensed library providing high-performance,
easy-to-use data structures and data analysis tools for the Python programming
language.

Pandas

import pandas as pd

contains high-level data structures and tools designed to make data analysis fast and easy.
Pandas are built on top of NumPy, and makes it easy to use in NumPy-centric applications.

pandas is well suited for many different kinds of data:

Tabular data with heterogeneously-typed columns
Ordered and unordered (not necessarily fixed-frequency) time series data.
Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column
labels
Any other form of observational / statistical data sets. The data actually need not be
labeled at all to be placed into a pandas data structure

Pandas features (1/2)
Here are just a few of the things that pandas does well:

Handling of missing data
Adding and deleting columns_ on the fly
data alignment: objects can be explicitly aligned to a set of labels/columns
Group by functionality and apply split-apply-combine operations on data sets to
aggregate and transform data
label-based slicing, no need for indices
Merging and joining

Pandas features (2/2)
Reshaping
Hierarchical labels
Loading data from flat files (CSV and delimited), Excel files, databases, and saving /
loading data from the ultrafast HDF5 format
Time series-specific functionality: date range generation and frequency
conversion, moving window statistics, moving window linear regressions, date shifting
and lagging, etc.
plotting support. e.g. see the official tutorial

Pandas: Some more words
It takes a while to get used to pandas. The documentation is exhaustive and there exists
hundreds of tutorials and use cases

Pandas Cookbooks
Datacamp tutorial
Dataquest.io tutorial

Some hands on
Checkout the notebook pandas.ipynb

Plotting

Plotting
There exists many libraries for plotting:

matplotlib: Python's most popular and comprehensive plotting library that is especially
useful in combination with NumPy/SciPy.
seaborn: extension for matplotlib with enchanced visual styles and additional plots
qqplot (like qqplot2 in R)
bokeh: Bokeh is a plottling library for interactive plots typically viewed in Web
applications
folium leaflets

Machine learning?
Machine learning

scikit-learn builds on NumPy and SciPy, including clustering, regression, and
classification, well documented, many tutorials and examplesUsed by data-heavy
startups, including Evernote, OKCupid, Spotify, and Birchbox.
Theano Theano is a Python library that allows you to define, optimize, and evaluate
mathematical expressions involving multi-dimensional arrays efficiently. Theano
features:
TensorFlow developed by Google, is an open source software library for numerical
computation using data flow graphs. It can be used for deep learning scenarios.
Check out their Python API
Keras: Keras is a high-level neural networks API, written in Python and capable of
running on top of either TensorFlow or Theano. It was developed with a focus on
enabling fast experimentation. Being able to go from idea to result with the least
possible delay is key to doing good research.

Data Mining & NLP
Data Mining & NLP

Scrapy an open source and collaborative framework for extracting the data you need
from websites. In a fast, simple, yet extensible way.
NLTK NLTK is a leading platform for building Python programs to work with human
language data. It provides easy-to-use interfaces to over 50 corpora and lexical
resources such as WordNet, along with a suite of text processing libraries for
classification, tokenization, stemming, tagging, parsing, and semantic reasoning and
wrappers for industrial-strength NLP libraries.

References
Chapter 3, Data Science from Scatch
Reingold (2014): Basic Techniques for Design and Analysis of Algorithms, Chapter 4,
In: Computing Handbook, CRC Press.

