
Advanced topics
Prof. Dr. Stefan Sobernig

Nov 14, 2019

Unit 6: Advanced topics

Basic analysis of algorithms: The Big O

(Library support):

High-level libraries: pandas (cont'd)

Low-level libraries: numpy, scipy

Plotting (cont'd): seaborn, bokeh

Parsing

Visualization primer: matplotlib, pandas

Slides: This unit is also available in a PDF format and as a single HTML Page

Readings:

Grus, J. (2015) Data Science from Scratch, O'Reilley, Chapter 3 (available via the WU library, EBSCO)

https://datascience.ai.wu.ac.at/ws19/dataprocessing1/unit6.html
https://datascience.ai.wu.ac.at/ws19/dataprocessing1/unit6.pdf
https://datascience.ai.wu.ac.at/ws19/dataprocessing1/unit6-plain.html
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=979529&site=ehost-live

Analysis of algorithms (1)

We encountered many different computational procedures (algorithms) for different purposes in data processing throughout Units 1 to 5, e.g.:

Data filtering

Data sorting

Data sampling

Deduplication (blocking, windowing)

Why do we want to describe the complexity of these procedures (or, the underlying algorithms)?

How can we describe the their complexity: space vs. time complexity?

Analysis of algorithms (2)

Studying the complexity of a computation (procedure, algorithm) involves quantifying and describing ...

... the difficulty of solving a computational problem (e.g., sorting)

... in terms of the required computational resources:

running time of a computation

memory ("space") consumed by a computation

Note: There can be a fundamental trade-off between running time

and memory consumption.

Our take: Time complexity of basic opterations in (Python) data processing.

Analysis of algorithms (3)

How fast does the (running/ execution) time required by an operation grow as the size of the problem increases in the worst case?

"Size of a problem" (), eg.: number of elements in a list or array, number of rows in a table or DataFrame.

"time required" (): a function of N, i.e.,

When this function grows rapidly, an operation (algorithm) will become unusable the larger .

When this function grows "slowly, an operation (algorithm) will remain usable even at larger .

Question.Question.
What would you consider "rapidly", "slowly"?What would you consider "rapidly", "slowly"?

n

f f (n)

f (n) n

f (n) n

Analysis of algorithms (4): Types of growth
Commonly found types of time growth for some input n:

: Time required is constant, independent of (e.g., hash searching).

: increasing n by a factor , e.g., doubling

increases the required time by a constant amount, i.e. logarithmic (example: binary search).

: Required time grows linearly with problem size (linear search in -element list)

: Doubling increases the required time by more than a double (merge sort, Python's timsort).

, : quadratic, cubic, etc. Doubling results in a four-/ eight-fold increase in the required time (simple sorting, matrix
multiplication)

: Doubling the problem size squares the time required, a.k.a. exponential growth).

f (n) = 1 n

f (n) = log(n) c n

f (n) = n n

f (n) = n ∗ log(n) n

f (n) = n2 f (n) = n3 n

f (n) = cn

Analysis of algorithms (5): Big O(rder) notation

Often, when planning data-processing steps, we want to compare two or available operations (e.g., search strategies).

Objective: Comparison based on their relative time complexities or growth rates: vs. .

"Strictness" of comparison, e.g., "equal or less than", "same as".

Big O(rder): iff is smaller than some constant multiple of (i.e., is of smaller or equal order than).

Example: vs. vs.

f (n) g(n)

g ∈ O(f) |g(x)| |f (x)| f g

n2 (+ 2n + 3)n2 2n

Analysis of algorithms (6): Big O(rder) notation

Analysis of algorithms (7): Urban Audit example

Question.Question.
How could we sort it by a different column? How could we sort it by a different column? e.g., how could we sort countries by population?e.g., how could we sort countries by population?

Let's look at the excerpts from the following notebook

haystack = [('BE', 10839905),
 ('BG', 7563710),
 ('CZ', 10532770),
 ('DE', 81802257),
 ('EE', 1365275),
 ('ES', 47021031),
 ('FR', 64611814),
 ('IT', 60340328),
 ('CY', 819100),
 ('HU', 10014324),
 ('NL', 16574989),
 ('PL', 38529866),
 ('PT', 10573479),
 ('RO', 22480599),
 ('SK', 5435273),
 ('FI', 5351427),
 ('SE', 9415570),
 ('NO', 4858199),
 ('CH', 7877571)]
haystack.sort() # by country code
haystack.sort(key=lambda x:x[1]) # by population count

https://datascience.ai.wu.ac.at/ws19/dataprocessing1/notebooks/bsearch.ipynb

Analysis of algorithms (8): Urban Audit (cont'd)
Note: if you know that a file is sorted, then searching in that file becomes easier/cheaper!

Question.Question.

"Find me a country with a population above 5000000 people?"‚"Find me a country with a population above 5000000 people?"‚

Analysis of algorithms (8): Urban Audit (cont'd)
Note: if you know that a file is sorted, then searching in that file becomes easier/cheaper!

Question.Question.

"Find me a country with a population above 5000000 people?"‚"Find me a country with a population above 5000000 people?"‚

What is the growth rate of the quickest searching algorithm you can think of?What is the growth rate of the quickest searching algorithm you can think of?

Analysis of algorithms (8): Urban Audit (cont'd)
Note: if you know that a file is sorted, then searching in that file becomes easier/cheaper!

Question.Question.

"Find me a country with a population above 5000000 people?"‚"Find me a country with a population above 5000000 people?"‚

What if you have the cities and populations already in a sorted list?What if you have the cities and populations already in a sorted list?

What is the growth rate of the quickest searching algorithm you can think of?What is the growth rate of the quickest searching algorithm you can think of?

Analysis of algorithms (8): Urban Audit (cont'd)
Note: if you know that a file is sorted, then searching in that file becomes easier/cheaper!

Question.Question.

"Find me a country with a population above 5000000 people?"‚"Find me a country with a population above 5000000 people?"‚

Answer:

What is the growth rate of the quickest searching algorithm you can think of?What is the growth rate of the quickest searching algorithm you can think of?

What if you have the cities and populations already in a sorted list?What if you have the cities and populations already in a sorted list?

O(log n)

Analysis of algorithms (8): Urban Audit (cont'd)
Note: if you know that a file is sorted, then searching in that file becomes easier/cheaper!

Question.Question.

"Find me a country with a population above 5000000 people?"‚"Find me a country with a population above 5000000 people?"‚

Why?

What is the growth rate of the quickest searching algorithm you can think of?What is the growth rate of the quickest searching algorithm you can think of?

What if you have the cities and populations already in a sorted list?What if you have the cities and populations already in a sorted list?

Answer: O(log n)

Analysis of algorithms (8): Urban Audit (cont'd)
Note: if you know that a file is sorted, then searching in that file becomes easier/cheaper!

Question.Question.

"Find me a country with a population above 5000000 people?"‚"Find me a country with a population above 5000000 people?"‚

Answer: Binary Search!

What is the growth rate of the quickest searching algorithm you can think of?What is the growth rate of the quickest searching algorithm you can think of?

What if you have the cities and populations already in a sorted list?What if you have the cities and populations already in a sorted list?

Answer: O(log n)

Why?

Analysis of algorithms (8): Urban Audit (cont'd)
Note: if you know that a file is sorted, then searching in that file becomes easier/cheaper!

Question.Question.

"Find me a country with a population above 5000000 people?"‚"Find me a country with a population above 5000000 people?"‚

Bottomline: (pre-)sorting can be costly, but might speed up other operations... another example: grouping!

What is the growth rate of the quickest searching algorithm you can think of?What is the growth rate of the quickest searching algorithm you can think of?

What if you have the cities and populations already in a sorted list?What if you have the cities and populations already in a sorted list?

Answer: O(log n)

Why?

Answer: Binary Search!

Analysis of algorithms (9): Urban Audit example

Search for first entry bigger than number in a sorted
list of lists of length 2:
def binary_search(number, array, lo, hi):

 if hi < lo: return array[lo] # no more numbers
 mid = (lo + hi) // 2 # midpoint in array
 if number == array[mid][0]:
 return array[mid] # number found here
 elif number < array[mid][0]:
 # try left of here
 return binary_search(number, array, lo, mid - 1)
 else:
 # try above here
 return binary_search(number, array, mid + 1, hi)

Sample call: Find me a country with a pop. > 5m people?
binary_search(5000000, haystack, 0, len(haystack))

Analysis of algorithms (10): Outlook

Python's sort applies Timsort: (worst case).

Custom algorithmic recipes for Python 3 (incl. sorting algorithms): http://python3.codes/.

Sampling: probability-based sampling (pandas)

Deduplication: total complexity of

Blocking: with block size

Windowing: with window size

O(n log n)

O()n
2

O(n(n/b + log n)) b < n

O(n(w + log n)) w < n

http://python3.codes/popular-sorting-algorithms/
http://python3.codes/

Visualization (1)

Visualizations

can support a number of data-processing activities (before analysis!);

can be used to deliver analysis results;

See Chapter 3 of "Data Science from Scratch":

matplotlib

pandas wrapper around matplotlib

Notebook

Corresponding code examples:

matplotlib: GitHub.

pandas: "Visualization tutorial":""

Advanced use of visualizations, such as graphical inference, beyond the scope of this course.

https://datascience.ai.wu.ac.at/ws19/dataprocessing1/notebooks/pandas-intro.ipynb
https://github.com/joelgrus/data-science-from-scratch/blob/master/code/visualizing_data.py

Visualization (2)

Tasks supported by visualisations:

Anomaly detection: data outliers;

Grouping: Forming and characterising aggregates of similar data points;

Finding association (correlation) between pairs of variables;

Computing derivatives (e.g., sums) of data points;

Finding extremes, ranges, and orders (rankings) in data points;

Filtering data points (e.g., for ranges);

Retrieval of selected data points;

(Describing data distributions;)

Visualization (3)

Which visualization type is most effective for a given task?

Accuracy

Performance time

Personal preferences

No One Size Fits All!

Visualization (4a): Scatterplot

Visualization (4b): Scatterplot

Visualization (5a): Lineplot

Visualization (5b): Lineplot

Visualization (6a): Barplot

Visualization (6b): Barplot

Visualization (7): Boxplot

Visualization (8): Task-based effectiveness

Visualization (9)

Dos:

Finding groups: Use bar charts (preference bias towards pie charts!)

Finding associations and trends: Use line plots and scatterplots (preference bias towards line plots!)

Finding anomalies: Use scatterplots

Donts:

Finding groups: Avoid line charts;

Compute derivatives: Avoid line charts;

Finding associations and trends: Avoid tables and pie charts;

High-level libraries

Agate: agate is a Python data analysis library that is optimized for humans instead of machines. It is an alternative to numpy and pandas
that solves real-world problems with readable code.

Pandas: pandas is an open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools for
the Python programming language.

http://agate.readthedocs.io/en/1.6.0/about.html
http://pandas.pydata.org/

Pandas

import pandas as pd

contains high-level data structures and tools designed to make data analysis fast and easy. Pandas are built on top of NumPy, and makes it easy to
use in NumPy-centric applications.

Pandas is well suited for many different kinds of data:

Tabular data with heterogeneously-typed columns

Ordered and unordered (not necessarily fixed-frequency) time series data.

Arbitrary matrix data (homogeneously typed or heterogeneous) with row and column labels

Any other form of observational / statistical data sets. The data actually need not be labeled at all to be placed into a pandas data structure

Pandas features (1/2)
Here are just a few of the things that pandas does well:

Handling of missing data

Adding and deleting columns_ on the fly

data alignment: objects can be explicitly aligned to a set of labels/columns

Group by functionality and apply split-apply-combine operations on data sets to aggregate and transform data

label-based slicing, no need for indices

Merging and joining

Pandas features (2/2)

Reshaping

Hierarchical labels

Loading data from flat files (CSV and delimited), Excel files, databases, and saving / loading data from the ultrafast HDF5 format

Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear
regressions, date shifting and lagging, etc.

plotting support. e.g. see the official tutorial

http://pandas.pydata.org/pandas-docs/stable/visualization.html

Pandas: Some more words
It takes a while to get used to pandas. The documentation is exhaustive and there exists hundreds of tutorials and use cases

Pandas Cookbooks

Datacamp tutorial

Dataquest.io tutorial

http://pandas.pydata.org/pandas-docs/stable/tutorials.html
https://www.datacamp.com/community/tutorials/pandas-tutorial-dataframe-python#gs.UT5Xh6E
https://www.dataquest.io/blog/pandas-python-tutorial/

Some hands on
Checkout the notebook pandas.ipynb

Low-level libraries

Chardet: Character encoding auto-detection in Python. As smart as your browser. Open source.

dateutils: The dateutil module provides powerful extensions to the standard datetime module, available in Python.

Csvkit: csvkit is a suite of command-line tools for converting to and working with CSV, the king of tabular file formats

Numpy the fundamental package for scientific computing with Python

SciPy is open-source software for mathematics, science, and engineering

http://chardet.readthedocs.io/en/latest/
https://dateutil.readthedocs.io/en/stable/
http://csvkit.readthedocs.io/en/749/
http://www.numpy.org/
https://docs.scipy.org/doc/scipy/reference/index.html

Numpy

import numpy as np

Numpy the fundamental package for scientific computing with Python. It contains among other things:

a powerful N-dimensional array object

sophisticated (broadcasting) functions

tools for integrating C/C++ and Fortran code

useful linear algebra, Fourier transform, and random number capabilities

Check out this tutorial or this one (includes also scipy and matplotlib)

NumPy does not provide high-level data analysis functionality, having an understanding of NumPy arrays and array-oriented computing will help
you use tools like Pandas much more effectively.

http://www.numpy.org/
https://docs.scipy.org/doc/numpy/user/quickstart.html
http://cs231n.github.io/python-numpy-tutorial/

SciPy
SciPy is open-source software for mathematics, science, and engineering

The SciPy library depends on NumPy, which provides convenient and fast N-dimensional array manipulation. The SciPy library is built to work with
NumPy arrays, and provides many user-friendly and efficient numerical routines , such as routines for numerical integration and optimization.

https://docs.scipy.org/doc/scipy/reference/index.html

SciPy subpackages (1/2)

cluster: Clustering algorithms

constants: Physical and mathematical constants

fftpack Fast Fourier Transform routines

integrate Integration and ordinary differential equation solvers

interpolate Interpolation and smoothing splines

linalg Linear algebra

ndimage N-dimensional image processing

SciPy subpackages (2/2)

odr Orthogonal distance regression

optimize Optimization and root-finding routines

signal Signal processing

sparse Sparse matrices and associated routines

spatial Spatial data structures and algorithms

special Special functions

stats Statistical distributions and functions

from scipy import linalg, optimize

SciPy
Again, check out the official tutorials

Some examples:

Interpolation

Solving linear system, Eigenvalues and eigenvectors

Signal processing

Statistics, random variables, fitting distributions, ..

https://docs.scipy.org/doc/scipy/reference/tutorial/index.html
https://docs.scipy.org/doc/scipy/reference/tutorial/interpolate.html
https://docs.scipy.org/doc/scipy/reference/tutorial/linalg.html
https://docs.scipy.org/doc/scipy/reference/tutorial/signal.html
https://docs.scipy.org/doc/scipy/reference/tutorial/stats.html

Plotting

Plotting
There exists many libraries for plotting:

matplotlib: Python's most popular and comprehensive plotting library that is especially useful in combination with NumPy/SciPy.

seaborn: extension for matplotlib with enchanced visual styles and additional plots

qqplot (like qqplot2 in R)

bokeh: Bokeh is a plottling library for interactive plots typically viewed in Web applications

folium leaflets

http://matplotlib.org/
http://web.stanford.edu/~mwaskom/software/seaborn/
https://github.com/yhat/ggplot
http://bokeh.pydata.org/
http://python-visualization.github.io/folium/

Machine learning?

Machine learning

scikit-learn builds on NumPy and SciPy, including clustering, regression, and classification, well documented, many tutorials and
examplesUsed by data-heavy startups, including Evernote, OKCupid, Spotify, and Birchbox.

Theano Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional
arrays efficiently. Theano features:

TensorFlow developed by Google, is an open source software library for numerical computation using data flow graphs. It can be used for
deep learning scenarios. Check out their Python API

Keras: Keras is a high-level neural networks API, written in Python and capable of running on top of either TensorFlow or Theano. It was
developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good
research.

http://scikit-learn.org/stable/
http://deeplearning.net/software/theano/
https://www.tensorflow.org/
https://www.tensorflow.org/api_docs/python/
https://keras.io/

Data Mining & NLP

Data Mining & NLP

Scrapy an open source and collaborative framework for extracting the data you need from websites. In a fast, simple, yet extensible way.

NLTK NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50
corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming,
tagging, parsing, and semantic reasoning and wrappers for industrial-strength NLP libraries.

https://scrapy.org/
http://www.nltk.org/
http://www.nltk.org/nltk_data/

References

Chapter 3, Data Science from Scatch

Reingold (2014): "Basic Techniques for Design and Analysis of Algorithms", Chapter 4, In: Computing Handbook, CRC Press.

B. Saket, A. Endert and Ç. Demiralp (2019), "Task-Based Effectiveness of Basic Visualizations," in IEEE Transactions on Visualization and
Computer Graphics, vol. 25, no. 7, pp. 2505-2512, DOI: 10.1109/TVCG.2018.2829750

