
Data formats & standards
Axel Polleres

Stefan Sobernig

October 13, 2020

Data formats

Data

Question.Question.
What is data?What is data?

Possible views on data

Type and scales: numerical (example), categorical (example), or binary (example)

Text types, e.g.: Emails, tweets, newspaper articles

Records: user-level data, timestamped event data (e.g.: log files)

Geo-location data

Relationship and communication data (Email conversations)

Sensor data (e.g., streams in Course III)

Resource types: images, audio, video (not covered in this lecture)

...

https://en.wikipedia.org/wiki/Districts_of_Vienna#District_populations
https://en.wikipedia.org/wiki/List_of_countries_by_credit_rating
http://www.polleres.net/Temp/Obiwanmindtrick.jpg

Data formats

Question.Question.
What is a data format?What is a data format?
What data formats do you know?What data formats do you know?
What differences between data formats did you encounter?What differences between data formats did you encounter?

Data formats

Data can be stored in many different representations (a.k.a. "formats").

Some formats are intended to be read and consumed by humans, other by machines

Further, data is often spread

across different systems & sources,

in different formats, and

with different access mechanisms.

Data formats
Representation of data to encode and to store these data in a computer, and to transfer data between computers

character-encoded data ("text")

plain (unstructured) text files (*.txt)

semi-structured data in text files

structured data in text files

binary-encoded data (0s and 1s)

images, audio, video

binary encoding of structured data

Character-encoded, unstructured data
Unstructured, textual data:

May be hidden inside other formats and needs to be extracted, e.g.:

plain-text mails hidden in mailbox archives .mbox format (RFC4155)

plain text from a PDF file

plain text from a HTML page

Some useful Python libraries:

pdftotext (for extracting plain text from PDFs)

beautifulsoup (for extracting data from HTML and XML)

https://www.ietf.org/rfc/rfc4155.txt
https://pypi.org/project/pdftotext/
https://pypi.org/project/beautifulsoup4/

Character-encoded, (semi-)structured data

Question.Question.
What is structured data? What is semi-structured data?What is structured data? What is semi-structured data?

Character-encoded, (semi-)structured data

Structured data adheres to a particular data definition (a.k.a. "data schema")

typically tabular (sets of records as rows of a table)

often exchanged using comma-separated values (CSV)

Semi-structured data is structured data that does not (fully) conform to a schema

typically represented by (nested) objects or sets of nested attribute-value pairs

exchange formats for semi-structured data are XML and JSON

Graph-structured data

a common standard exchange format is: RDF /Turtle

Beware: The boundaries are blurry ... (e.g. there's a JSON serialisation for RDF, called JSON-LD, etc.)

https://tools.ietf.org/html/rfc4180
https://www.w3.org/XML/
http://json.org/
https://www.w3.org/RDF/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/json-ld/

CSV

Standard defined in RFC 4180

CSV and its dialects have been in widespread use since the 1960s, but only became standardised in 2005

This is what the RFC 4180 says:

"Within the header and each record, there may be one or more fields, separated by commas. Each line should contain the same number of
fields throughout the file."

"Each line should contain the same number of fields throughout the file."

"Each field may or may not be enclosed in double quotes"

"Each record is located on a separate line, delimited by a line break (CRLF)."

Unfortunately, these rules are not always followed "in the wild":

Johann Mitlöhner, Sebastian Neumaier, Jürgen Umbrich, and Axel Polleres. Characteristics of open data CSV files. In 2nd International Conference
on Open and Big Data, August 2016.

http://tools.ietf.org/html/rfc4180
http://polleres.net/publications/mitl-etal-2016OBD.pdf

CSV

Let's look at an example

weather data from the Austrian Zentralanstalt für Meteorologie und Geodynamik (ZAMG):

http://www.zamg.ac.at/ogd/

CSV
You find a CSV version of this data here: http://www.zamg.ac.at/ogd/

"Station";"Name";"Höhe m";"Datum";"Zeit";"T °C";"TP °C";"RF %";"WR °";"WG km/h";"WSR °";"WSG km/h";"N
l/m²";"LDred hPa";"LDstat hPa";"SO %"

11010;"Linz/Hörsching";298;"13-10-2016";"01:00";5,8;5,3;97;230;3,6;;5,4;0;1019,4;981,3;0

11012;"Kremsmünster";383;"13-10-2016";"01:00";5,2;4;94;226;10,8;220;13,3;0;1019,6;972,3;0

11022;"Retz";320;"13-10-2016";"01:00";7;5,3;89;323;14,8;323;28,1;0;1017,7;979;0

11035;"Wien/Hohe Warte";203;"13-10-2016";"01:00";8,1;5,4;83;294;15,1;299;33,1;0;1017,4;992,2;0

11036;"Wien/Schwechat";183;"13-10-2016";"01:00";8,2;5,2;81;300;25,9;;38,9;0;1017,3;995,1;0

http://www.zamg.ac.at/ogd/

CSV

Question: What's NOT conformant to RFC 4180 here?Question: What's NOT conformant to RFC 4180 here?

Potential issues:

CSV

Question: What's NOT conformant to RFC 4180 here?Question: What's NOT conformant to RFC 4180 here?

Potential issues:

different delimiters

CSV

Question: What's NOT conformant to RFC 4180 here?Question: What's NOT conformant to RFC 4180 here?

Potential issues:

lines with different numbers of elements

different delimiters

CSV

Question: What's NOT conformant to RFC 4180 here?Question: What's NOT conformant to RFC 4180 here?

Potential issues:

header line present or not

different delimiters

lines with different numbers of elements

XML

eXtensible Markup Language, a W3C standard

Evolved from the Standard Generalized Markup Language (SGML)

Semi-structured data, with structured portions taking the shape of a tree of meta-data (annotation) elements.

consisting of elements, delimited by named start and end tags <name>...</name>

with one root element

arbitrary nesting

start tags can additionally carry attributes

unstructured data are represented as text nodes

Various "companion standards", e.g. schema languages:

DTD (Document Type Defintion)

XSD (XML Schema Definition)

https://www.w3.org/XML/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=16387
https://www.w3.org/TR/xmlschema11-1/

XML
Example from the entry tutorial:

XML
Potential issues: e.g.

XML
Potential issues: e.g.

broken nesting: non-closed tags

XML
Potential issues: e.g.

syntax: missing quotes in attributes, ambiguous meaning of special characters

broken nesting: non-closed tags

XML
Potential issues: e.g.

there are (mostly educational) online-validators:

broken nesting: non-closed tags

syntax: missing quotes in attributes, ambiguous meaning of special characters

XML
Potential issues: e.g.

e.g. w3schools.com's XML valiadtor

broken nesting: non-closed tags

syntax: missing quotes in attributes, ambiguous meaning of special characters

there are (mostly educational) online-validators:

https://www.w3schools.com/xml/xml_validator.asp

XML
Potential issues: e.g.

for (X)HTML check e.g. W3C's markup validator

broken nesting: non-closed tags

syntax: missing quotes in attributes, ambiguous meaning of special characters

there are (mostly educational) online-validators:

e.g. w3schools.com's XML valiadtor

https://validator.w3.org/
https://www.w3schools.com/xml/xml_validator.asp

XML
Potential issues: e.g.

for serious data processing you rather want to use Python ;-)

broken nesting: non-closed tags

syntax: missing quotes in attributes, ambiguous meaning of special characters

there are (mostly educational) online-validators:

e.g. w3schools.com's XML valiadtor

for (X)HTML check e.g. W3C's markup validator

https://www.w3schools.com/xml/xml_validator.asp
https://validator.w3.org/

JSON

JavaScript Object Notation (JSON)

an unordered set of key-value pairs of data

A JSON Object is enclosed in { }.

Keys and values separated by :

Key value-pairs are separated by ,

JSON objects can be nested, i.e. values can again be objects.

arrays (i.e. ordered collections of values) are enclosed in '[' ']'.

JSON
Example:

{ "id": 10,
 "firstname": "Alice",
 "lastname": "Doe",
 "active": true,
 "shipping_addresses":
 [{ "street": "Wonderland 1", "zip": 4711, "city": "Vienna", "country": "Austria", "home": true },
 { "street": "Welthandelsplatz 1", "zip": 1020, "city": "Vienna", "country": "Austria" },
 { "street": "MickeyMouseStreet10", "zip": 12345, "city": "Entenhausen", "country": "Germany" }]
}

JSON
Example (vs. XML):

<customer id="10" active="true">
 <firstname>Alice</firstname>
 <lastname>Doe</lastname>

 <shipping_addresses>
 <address home = "true"><street>Wonderland 1</street><zip>4711</zip><city>Vienna</city>
<country>Austria</country></address>
 <address><street>Welthandelsplatz 1</street><zip>1020</zip><city>Vienna</city>
<country>Austria</country></address>
 <address><street>MickeyMouseStreet10</street><zip>12345</zip><city>Entenhausen</city>
<country>Germany</country></address>
</customer>

JSON
Jupyter notebooks are represented as JSON documents:

{
 "cells": [
 {
 "cell_type": "markdown",
 "source": [
 "## Assignment 1\n",
 "\n",
 "This assignment is due on mm-dd-YYY-hh:mm by uploading the completed notebook at Learn@WU.\n",
 "\n",
 "### Task 1\n",
 "\n"

JSON

JSON often used in Web applications to transfer JavaScript objects between server-side and client-side application

... JSON has become the most common format for Web APIs

There is also a schema-definition language for JSON

Example online validator (again, rather for small/educational examples): jsonlint.com

http://json-schema.org/
https://jsonlint.com/

Summary: Character-encoded, (semi-)structured data

Structured data adhering to a particular schema can be represented *as comma-separated values lists (CSV)

Semi-structured data is a form of structured data that does not conform with a fixed schema: (XML, JSON)

Outlook: graph-structured data can be represented using standardised data formats (RDF; Turtle; Property Graphs)

On the one hand, CSV, XML, RDF can be seen as just different serialisation formats of data.

On the other hand, they employ different characteristic, abstract data structures (event-oriented vs. document-oriented encodings).

There are diffferent tools (and Python libraries!) for dealing with these formats and their variants.

https://www.w3.org/Data/events/data-ws-2019/

Excursus: Binary encoding of structured data

For most structured data formats there are also binary (often compressed) binary formats, examples:

XML: EXI (Efficient XML Interchange format)

compressed, binary XML interchange format

a W3C standard recommendation

JSON: BSON (Binary JSON)

RDF: HDT (Headers-Dictionary-Triples)

a binary, compressed RDF serialization, partially inspired by EXI

W3C member submission

Co-developed by our institute!

https://www.w3.org/TR/exi/
http://bsonspec.org/
http://www.rdfhdt.org/
https://www.w3.org/Submission/2011/03/

Data Access

Ways to access and get data

Question.Question.
Which access methods can be used to retrieve/download a dataset?Which access methods can be used to retrieve/download a dataset?

Ways to access and get data
From a file on disk:

depending on your operating system, different file paths format, e.g.

C:\Users\apollere\Documents\myFile.txt

/home/users/apollere/myfile.txt

or, relative paths ./data/myfile.txt

From the Web:

Download the dataset directly via a URL

Access the dataset via a API

Scraping the data from a HTML page

Downloading data
Datasets which have an URL (Web address) can be in general directly downloaded

either manually by pointing the browser to the URL and saving it

or using programs which access the content and download it to disk or memory

Downloading data

Question.Question.
Can all URLs be easily downloaded? If no, why?Can all URLs be easily downloaded? If no, why?

Downloading data
Things to consider when downloading files.

Some URLs require authentication (we do not cover that case in the lecture)

simplest mechanism: .htaccess ,

typically more sophisticated methods used nowadays (OAUTH)

Robots.txt protocol

A protocol to guide machines what they are allowed to access

if existing, located at http://DOMAIN/robots.txt

Robots/Machines can ignore this protocol.

NOTE: If you want to respect the robots.txt file, you need to first access the file (if available),
inspect the allow/disallow rules and apply them to the URL you want to download.

http://www.htaccess-guide.com/
https://oauth.net/
http://www.robotstxt.org/
http://domain/robots.txt

Robots.txt

Defines which URL sub-directory are allowed or disallowed to be accessed and by whom (User-agent)

Also allows to recommend a so called crawl-delay (time span between to consecutive accesses)

Robots.txt: Example
http://data.wu.ac.at/robots.txt

User-agent: *
Disallow: /portalwatch/api/
Disallow: /portalwatch/portal/
Disallow: /portal/dataset/rate/
Disallow: /portal/revision/
Disallow: /portal/dataset/*/history
Disallow: /portal/api/

User-Agent: *
Crawl-Delay: 10

In this example, any robot is not allowed to access the specified sub-directories and any robot should wait 10 seconds between two requests

http://data.wu.ac.at/robots.txt

Accessing data via API
Some data sources can be only retrieved via Application Programming Interfaces (APIs).

Question.Question.
Any reasons a data publisher would provide data access via an API rather than providing the data as files?Any reasons a data publisher would provide data access via an API rather than providing the data as files?

Accessing data via API
The reason for providing data access via an API:

the data is generated dynamically/on-demand (e.g. current temperature)

access control (APIs are usually only accessible with access credentials):

who is accessing data and from where

how often someone can access the data (to avoid overloading the server)

fine grained access to data

all weather information for a certain location vs. downloading GB of global weather data

easier integration into an existing Application

Accessing data via API: Examples
Last.fm

The Last.fm API allows anyone to build their own programs using Last.fm data, whether they're on the Web, the desktop or mobile devices. Find
out more about how you can start exploring the social music playground or just browse the list of methods below.

Twitter

The REST APIs provide programmatic access to read and write Twitter data. Author a new Tweet, read author profile and follower data, and more

(not entirely) Open Weatherdata

a JSON API for easy access of current weather, freemium model (e.g., historic data is not free)

ProgrammableWeb - an API directory for over 20K Web accessible APIs

http://www.last.fm/api
https://developer.twitter.com/
https://openweathermap.org/
http://www.programmableweb.com/

Accessing data via a Distributed System API

Many APIs require authentication and apply a rate limit (how many access per time span)

Specific access methods/protocols (library and protocol)

typically requires registration via an API key

Protocol: There exists different access protocols

REpresentational State Transfer (REST): access to an API via HTTP message patterns

Simple Object Access Protocol (SOAP) (XML-based)

libraries: Typically provide functions that hide the underlying access mechanisms

Returned data format is typically negotiable (JSON, generic or specific_XML_)

List of Python API's

http://rest.elkstein.org/
https://www.w3.org/TR/soap/
http://www.pythonforbeginners.com/api/list-of-python-apis

Accessing data via API: WU BACH API
The WU BACH API provide machine-readable data of WU's digital ecosystem in line with many OGD [1] initiatives.

e.g https://bach.wu.ac.at/z/BachAPI/courses/search?query=data+science

[
 [
 "19S",
 "5585",
 "Data Processing 1",
 [
 [
 6947,
 "Sobernig S."
],
 [
 12154,
 "Polleres A."
]
]
]
 /* ... */
]

1: Open Government Data

https://bach.wu.ac.at/z/start/api
https://bach.wu.ac.at/z/BachAPI/courses/search?query=data+science

Scraping Web data
Web scraping is the act of taking content from a Web site with the intent of using it for purposes outside the direct control of the site owner.
[source]

Typical scenarios for Web scraping: Collecting data on

real estate,

eCommerce, or

travel pages

Some examples:

Get all events from falter.at

Get visitor statistics for the Austrian Bundesliga

Web scraping also requires to parse a HTML file using dedicated libraries.

WARNING: The legal ground for Web scraping is often not clear and we do not encourage or suggest to do Web scraping before checking if
the site allows it.
Legal topics around Web scraping will be covered in course III.

http://resources.distilnetworks.com/h/i/111901208-web-scraping-everything-you-wanted-to-know-but-were-afraid-to-ask/181642
https://www.falter.at/events
http://www.bundesliga.at/de/statistik/zuschauer/zuschauerstatistik-pro-saison/

Accessing Data: the Python Way

Notebook for Accessing Data: the Python Way
download notebook

The following is the slide version of the notebook

https://datascience.ai.wu.ac.at/ws20/dataprocessing1/notebooks/accessing-data.ipynb

Accessing data sources: Some Python ways
In this part, we cover two data-access methods

1. Loading data from disk

2. Loading data from a Web resource (URL)

We will also learn how to guess the file format by inspecting the metadata and the content of the retrieved data.

Python 3: Opening and closing data streams
The typical steps involved in consuming data are:

1. Open a stream to read the data (either from file or HTTP)

2. Consume the content (e.g. loading the whole content or parts of it)

3. Closing the stream to free up resources:

files: allow other processes to access the file (avoid errors/exceptions "*File used by another process*")

HTTP: closing a stream allows one to reuse connections

Python 3: Automatically closing data streams
The with statement is used to wrap the execution of a block with methods defined by a context manager. This allows common try / catch /
finally blocks to be encapsulated for convenient reuse.

Typical use-case : automatically ensure that streams are closed.

Other use cases: timing of functions, printing of logs at the end of a call

with COMMAND as C:
 #work with C

Loading files from disk
Given that a file is stored on the local machine, we can access the file and inspect or load its content.

There are typically two ways to read the content of a (text-encoded) file:

1. Load the whole content of the file and store it in a variable for further processing

2. Read the file line by line (e.g., if files are large)

See also Chapter 7.2 in the Python 3 tutorial

https://docs.python.org/3/tutorial/inputoutput.html#reading-and-writing-files

File location
We need the location of the file on disk to load its content.

An absolute file path points to the same location in a file system, regardless of the current working directory. To do that, it must include the root
directory.

Windows: C:\Users\userName\data\course-syllabus.txt
Linux/Mac: /home/userName/data/course-syllabus.txt

A relative path points to the relative location of a file based on the given/current working directory.

Windows:
Linux: ~/data/course-syllabus.txt #starting from home directory
Linux: ../data/course-syllabus.txt #go one folder back, then into data

Function: open()

help(open)

Help on built-in function open in module __builtin__:
open(...)
 open(name[, mode[, buffering]]) -> file object

 Open a file using the file() type, returns a file object.
 This is the preferred way to open a file.
 See file.__doc__ for further information.

Read content of file into memory
the function read consumes the entire contents of the file will be read and returned

filePath="./data/course-syllabus.txt"
#open file in read mode
f = open(filePath) # or open(filePath, 'r')

print("Full Output of content:")
content= f.read() # read the whole content and store it in variable content
print(content)
f.close() # do not forget to close the file

#better
with open(filePath) as f: # Carefully with indention and tabs
 content = f.read()
 print(content)

see also: ./src/openFile.py

https://datascience.ai.wu.ac.at/ws20/dataprocessing1/src/openFile.py

Read content of file into memory

Terminal> python3 ./src/openFile.py
Full Output of content:
This fast-paced class is intended for getting students interested in data science up to speed:
We start with an introduction to the field of "Data Science" and into the overall Data Science Process.
The primary focus of the rest of the course is on gaining fundamental knowledge for Data processing, ...
We will learn how to deal with different data formats and how to use methods and tools to integrate data
from various sources, ...

This fast-paced class is intended for getting students interested in data science up to speed:
We start with an introduction to the field of "Data Science" and into the overall Data Science Process.
The primary focus of the rest of the course is on gaining fundamental knowledge for Data processing, ...
We will learn how to deal with different data formats and how to use methods and tools to integrate data
from various sources, ...

Read a single line from a file
The function readline consumes a single line from the file; a newline character (\n) is left at the end of the string

filePath="./data/course-syllabus.txt"
#open file in read mode
with open(filePath) as f:# or open(filePath, 'r')
 print("first line: "+f.readline())
 print("second line: "+f.readline())
 print("third line: "+f.readline())

Read a single line from a file: Output

Terminal> python3 ./src/openFileReadLine.py
first line: This fast-paced class is intended for getting students interested in data science up to
speed:

second line: We start with an introduction to the field of "Data Science" and into the overall Data
Science Process.

third line: The primary focus of the rest of the course is on gaining fundamental knowledge for Data
processing, ...

see also: ./src/openFileReadLine.py

https://datascience.ai.wu.ac.at/ws20/dataprocessing1/src/openFileReadLine.py

Read lines from a file using a loop

filePath="./data/course-syllabus.txt"
#open file in read mode
with open(filePath) as f:# or open(filePath, 'r')
 for line in f: # loop over every line in the file (separated by newline)
 print(line)

Read lines from a file using a loop: Output

Terminal> python3 ./src/openFileLoopLines.py
This fast-paced class is intended for getting students interested in data science up to speed:

We start with an introduction to the field of "Data Science" and into the overall Data Science Process.

The primary focus of the rest of the course is on gaining fundamental knowledge for Data processing, ...

We will learn how to deal with different data formats and how to use methods and tools to integrate data
from various sources, ...

see also: ./src/openFileLoopLines.py

https://datascience.ai.wu.ac.at/ws20/dataprocessing1/src/openFileLoopLines.py

Resource-saving way to guess the format of a file

Question.Question.
How can we guess the format of a file using as few resources as possible?How can we guess the format of a file using as few resources as possible?

Resource-saving way to guess the format of a file

Inspect the file extension of the file , if availabel (e.g. .txt)

read the first couple of lines, print them and see if you detect any known format syntax patterns (e.g. JSON brackets, CSV delimiters)

Getting the file size of a local file

filePath="./data/course-syllabus.txt"

import os
fSize = os.path.getsize(filePath)

print('File size of'+filePath+' is: '+str(fSize) + ' Bytes') # typcasting of an int to str for str
concatination

fileSize.py: Output

Terminal> python3 ./src/fileSize.py
File size of./data/course-syllabus.txt is: 435 Bytes

see also: ./src/fileSize.py

https://datascience.ai.wu.ac.at/ws20/dataprocessing1/src/fileSize.py

Loading data from a Web resource (URL)
There exists many libaries in Python 3 to interact with Web resources using the HTTP protocol.

the urllib library is preinstalled in any Python installation

the requests library, requires to be installed, but is easier to use

https://docs.python.org/dev/library/urllib.html
http://docs.python-requests.org/en/master/

HTTP protocol operations
The HTTP protocol is the foundation of data communication for the World Wide Web

The current version of the protocol is HTTP1.1.

A client (browser or library) typically uses the HTTP GET operation to retrieve information about and the content of a HTTP URL.

https://tools.ietf.org/html/rfc2616

Loading data from a Web resource: urllib
First things first. We need to load the library to be able to use it

import urllib.request

Afterwards we need to open a connection to the HTTP Server and request the content of the URL

urllib.request.urlopen(URL)

Urllib: accessing a URL

import urllib.request
url="https://bach.wu.ac.at/z/BachAPI/courses/search?query=data+processing"
with urllib.request.urlopen(url) as f:
 print(f.read())

Urllib: Output

Terminal> python3 ./src/urllib-load.py
b"[['20W', '1345', u'Data Processing 1', [[6947, u'Sobernig S.'], [12154, u'Polleres A.']]], ['20W',
'2118', u'Data Processing 1', [[6947, u'Sobernig S.'], [12154, u'Polleres A.']]], ['21S', '5259', u'Data
Processing 1', [[6947, u'Sobernig S.'], [12154, u'Polleres A.']]], ['21S', '5781', u'Data Processing 1',
[[6947, u'Sobernig S.'], [12154, u'Polleres A.']]], ['20W', '1346', u'Data Processing 2: Scalable Data
Processing, Legal & Ethical Foundations of Data Science', [[13928, u'Kirrane S.']]], ['20W', '2119',
u'Data Processing 2: Scalable Data Processing, Legal & Ethical Foundations of Data Science', [[13928,
u'Kirrane S.']]], ['21S', '5260', u'Data Processing 2: Scalable Data Processing, Legal & Ethical
Foundations of Data Science', [[13928, u'Kirrane S.'], [17389, u'Krickl A.']]], ['21S', '5783', u'Data
Processing 2: Scalable Data Processing, Legal & Ethical Foundations of Data Science', [[13928, u'Kirrane
S.'], [17389, u'Krickl A.']]]]"

see also: ./src/urllib-load.py

https://datascience.ai.wu.ac.at/ws20/dataprocessing1/src/urllib-load.py

Loading data from a Web resource: requests library
First things first. We need to install and then load the library to be able to use it. the requests library is installed by default on the course container
and in any anaconda installation.

import requests

Afterwards we need to open a connection to the HTTP Server and request the content of the URL

requests.get(URL)

Requests: accessing a URL

import requests
url="https://bach.wu.ac.at/z/BachAPI/courses/search?query=data+processing"

r = requests.get(url)
content=r.text
print(content)

Code: Output

Terminal> python3 ./src/requests-load.py
[['20W', '1345', u'Data Processing 1', [[6947, u'Sobernig S.'], [12154, u'Polleres A.']]], ['20W',
'2118', u'Data Processing 1', [[6947, u'Sobernig S.'], [12154, u'Polleres A.']]], ['21S', '5259', u'Data
Processing 1', [[6947, u'Sobernig S.'], [12154, u'Polleres A.']]], ['21S', '5781', u'Data Processing 1',
[[6947, u'Sobernig S.'], [12154, u'Polleres A.']]], ['20W', '1346', u'Data Processing 2: Scalable Data
Processing, Legal & Ethical Foundations of Data Science', [[13928, u'Kirrane S.']]], ['20W', '2119',
u'Data Processing 2: Scalable Data Processing, Legal & Ethical Foundations of Data Science', [[13928,
u'Kirrane S.']]], ['21S', '5260', u'Data Processing 2: Scalable Data Processing, Legal & Ethical
Foundations of Data Science', [[13928, u'Kirrane S.'], [17389, u'Krickl A.']]], ['21S', '5783', u'Data
Processing 2: Scalable Data Processing, Legal & Ethical Foundations of Data Science', [[13928, u'Kirrane
S.'], [17389, u'Krickl A.']]]]

see also: ./src/requests-load.py

https://datascience.ai.wu.ac.at/ws20/dataprocessing1/src/requests-load.py

Guessing the file format via the URL

Question.Question.
How can we guess the format of the content of a URL? (...and why would we want to?)How can we guess the format of the content of a URL? (...and why would we want to?)

Guessing the file format via the URL

patterns in the URL

file extension: http://data.wu.ac.at/.../course-syllabus.txt (.txt)

query path: http://..../api/courses?format=csv (format=csv)

HTTP Response Header

contains not only information about the file format

http://data.wu.ac.at/.../course-syllabus.txt
http://..../api/courses

HTTP Response Header
Every HTTP operation has a HTTP request and response header. A HTTP response header is a message from a HTTP server for a request. The
header message contains:

The HTTP status code

The response header fields

Empty line

Message body/content

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

HTTP Response Header Examples

HTTP/1.1 200 OK
Date: Wed, 12 Oct 2016 12:39:12 GMT
Server: Apache/2.4.18 (Ubuntu) mod_wsgi/4.3.0 Python/2.7.12
Last-Modified: Wed, 12 Oct 2016 07:29:32 GMT
ETag: "1b3-53ea5f4498d97"
Accept-Ranges: bytes
Content-Length: 435
Vary: Accept-Encoding
Content-Type: text/plain

See also the corresponding RFC. Interesting header fields: Content-Type and Content-Length

Notice.Notice.
Python3 is case-sensitivePython3 is case-sensitive, meaning that "Content-Type" != "content-type". Sometimes, header fields might be in lower-case or capitalized, meaning that "Content-Type" != "content-type". Sometimes, header fields might be in lower-case or capitalized

https://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html

Download only the HTTP response header:

Question.Question.
Why would you want to do that?Why would you want to do that?

HTTP command HEAD

vs.

HTTP command GET

... Let's check the HTTP specification

https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

HTTP Response Header with Urllib

import urllib.request
url="https://bach.wu.ac.at/z/BachAPI/courses/search?query=data+processing"
req = urllib.request.Request(url , method="HEAD") # create a HTTP HEAD request
with urllib.request.urlopen(req) as resp:
 header = resp.info()
 # print the full header
 print("Header:")
 print(header)

 ## print the content-type
 print("Content-Type:")
 print(header['Content-Type'])

 ## print the content-type
 print("Content-Length in Bytes:")
 print(header['Content-Length'])

Urllib: Output

Terminal> python3 ./src/urllib-header.py
Header:
Date: Sun, 21 Feb 2021 22:55:11 GMT
Server: Zope/(2.13.23, python 2.7.9, linux2) ZServer/1.1
Set-Cookie: BACH_PRXY_ID=YDLkz8ovI5suc6W6@ZMZawAAABU; path=/; domain=.wu.ac.at; expires=Wed, 19-Feb-2031
22:55:11 GMT
Set-Cookie: BACH_PRXY_SN=YDLkz8ovI5suc6W6@ZMZawAAABU; path=/; domain=.wu.ac.at
Last-Modified: Sat, 29 Dec 2018 15:06:16 GMT
Accept-Ranges: none
Content-Type: application/octet-stream
Content-Length: 418
Via: 1.1 bach.wu.ac.at
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
X-Content-Type-Options: nosniff
Connection: close

Content-Type:
application/octet-stream
Content-Length in Bytes:
418

see also: ./src/urllib-header.py

https://datascience.ai.wu.ac.at/ws20/dataprocessing1/src/urllib-header.py

HTTP Response Header with Requests

import requests
url="https://bach.wu.ac.at/z/BachAPI/courses/search?query=data+processing"

r = requests.head(url) # would also work with a HTTP Get
headerDict=r.headers
print(headerDict)

Requests: Output

Terminal> python3 ./src/requests-header.py
{'Date': 'Sun, 21 Feb 2021 22:55:11 GMT', 'Server': 'Zope/(2.13.23, python 2.7.9, linux2) ZServer/1.1',
'Set-Cookie': 'BACH_PRXY_ID=YDLkz5eMpZVMnL8BAidQOQAAAGQ; path=/; domain=.wu.ac.at; expires=Wed, 19-Feb-
2031 22:55:11 GMT, BACH_PRXY_SN=YDLkz5eMpZVMnL8BAidQOQAAAGQ; path=/; domain=.wu.ac.at', 'Last-Modified':
'Sat, 29 Dec 2018 15:06:16 GMT', 'Accept-Ranges': 'none', 'Content-Type': 'application/octet-stream',
'Content-Length': '418', 'Via': '1.1 bach.wu.ac.at', 'X-XSS-Protection': '1; mode=block', 'X-Frame-
Options': 'SAMEORIGIN', 'X-Content-Type-Options': 'nosniff', 'Connection': 'close'}

see also: ./src/requests-header.py

https://datascience.ai.wu.ac.at/ws20/dataprocessing1/src/requests-header.py

Inspect Request library HTTP Response Headers

import requests
url="http://datascience.ai.wu.ac.at/ss17_datascience/data/course-syllabus.txt"

r = requests.head(url) # would also work with a HTTP Get
headerDict=r.headers

#>
#print all available response header keys
print("Header")
print(headerDict)

#access content-type header
if "Content-Type:" in headerDict:
 print("Content-Type:")
 print(headerDict['Content-Type'])

Requests: Output

Terminal> python3 ./src/requests-header-inspect.py
Header
{'Date': 'Sun, 21 Feb 2021 22:55:12 GMT', 'Server': 'Apache', 'Location':
'https://datascience.ai.wu.ac.at/ss17_datascience/data/course-syllabus.txt', 'Keep-Alive': 'timeout=5,
max=100', 'Connection': 'Keep-Alive', 'Content-Type': 'text/html; charset=iso-8859-1'}

see also: ./src/requests-header-inspect.py

https://datascience.ai.wu.ac.at/ws20/dataprocessing1/src/requests-header-inspect.py

Handling data formats and character encodings

Character Encodings

Question.Question.
Why is that occurring? "J�rgen"Why is that occurring? "J�rgen"

Character Encodings

Textual symbols (=characters) are encoded in bits and bytes differently, depending on the number of characters in the overall symbol set:

ASCII needs only 1 byte for its 127 characters.

Unicode uses up to 4 bytes (the common UTF-8 encoding uses variable length of 1-4 bytes)

Assuming a wrong encoding when reading a textfile, or using software tools that cannot handle the input encoding correctly produces
arifacts like the one in the last slide.

Further notebooks

Encoding and reading textfiles

Dealing with CSV

Dealing with JSON

Dealing with RDF

Dealing with XML

https://datascience.ai.wu.ac.at/ws20/dataprocessing1/notebooks/Encodings+and+reading+text+files.ipynb
https://datascience.ai.wu.ac.at/ws20/dataprocessing1/notebooks/Dealing+with+CSV+in+Python.ipynb
https://datascience.ai.wu.ac.at/ws20/dataprocessing1/notebooks/Dealing+with+JSON+in+Python.ipynb
https://datascience.ai.wu.ac.at/ws20/dataprocessing1/notebooks/Dealing+with+RDF+in+Python.ipynb
https://datascience.ai.wu.ac.at/ws20/dataprocessing1/notebooks/Dealing+with+XML+in+Python.ipynb

Excursus: How and where to find data?

Question

Question.Question.
How can you find interesting datasets for your project?How can you find interesting datasets for your project?

Possible ways to find data

Search online using Google, Bing, Yahoo

Follow questions/search on Quora, Stackoverflow,...

Blogs about datascience

Curated lists of datasets

Twitter ('#dataset' '#opendata')

Data portals

https://www.quora.com/
https://stackoverflow.com/
https://twitter.com/search?q=%23dataset%20%23opendata&src=typd

Google, Bing, etc.
Many datasets can be found using a Web Search engine such as Google, Bing, etc.

Combine your keyword search with tokens such as "csv", ".csv".

Such search engines offer also more advanced search features to filter for particular data formats

Google: filetype:csv, filetype:json (see file types indexed by google)

Bing: filetype:csv, ext:csv (Bing search features)

Fileformat search does not return very good results on all search engines, unfortunately.

New in Google: Dataset Search

(Try out e.g.: 'WU Vienna Lectures')

Our 'homebrewn' Open Dataset search (Spatio-temporal search in Open Data)

http://google.com/
http://bing.com/
https://support.google.com/webmasters/answer/35287?hl=en
http://help.bing.microsoft.com/#apex/18/en-us/10001/-1
https://toolbox.google.com/datasetsearch
https://toolbox.google.com/datasetsearch/search?query=WU%20Vienna%20lectures
https://data.wu.ac.at/odgraphsearch/

Follow questions/search on Quora, Stackoverflow, Reddit
Quora and Stackoverflow are question-and-answer sites where people can pose any question and receive community answers

Some direct links:

Quora: tag datasets (a list of questions tagged with dataset)

Quora: Where-can-I-find-large-datasets-open-to-the-public

Stackoverflow: tag dataset

Reddit.com group datasets

Notice.Notice.
The popular useful platform change over time. Hint: Follow The popular useful platform change over time. Hint: Follow Metcalfe's LawMetcalfe's Law

https://www.quora.com/topic/Datasets
https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public
http://stackoverflow.com/questions/tagged/dataset
https://www.reddit.com/r/datasets/
https://en.wikipedia.org/wiki/Metcalfe%27s_law

Blogs about datascience
Some general datascience blogs regularly have posts about datasets

Dataquest.io Blog

thedataincubator.com blog

Lists of datascience blogs:

100 Active Blogs on Analytics, Big Data, Data Mining, Data Science, Machine Learning

another currated lists of datascience blogs

Quora examples:

Quora: What are the best datascience blogs?

Quora: Where can I find large datasets open to the public?

https://www.dataquest.io/blog/free-datasets-for-projects/
http://blog.thedataincubator.com/2014/10/data-sources-for-cool-data-science-projects-part-1/
http://www.kdnuggets.com/2016/03/100-active-blogs-analytics-big-data-science-machine-learning.html
https://github.com/rushter/data-science-blogs
https://www.quora.com/What-are-the-best-blogs-for-data-scientists-to-read
https://www.quora.com/Where-can-I-find-large-datasets-open-to-the-public

Curated lists of datasets
Many people also provide a curated lists of public datasets or APIs to datasets. These lists can be typically found via a Google/Bing/Yahoo Search

Some examples:

Git repository of Fivethirtyeight

kaggle.com dataset market

awesome-public-datasets (Github)

https://github.com/fivethirtyeight/data
https://www.kaggle.com/datasets
https://github.com/caesar0301/awesome-public-datasets

Open Data Portals
So called (Open Data) portals are catalogs for datasets.

Austrian Open Government Data portal data.gv.at

Vienna Open Data open.wien.gv.at

WU Open Data portal data.wu.ac.at

European Data portal europeandataportal.eu/

Further links:

The WU project, Open Data Portal Watch maintains a list of 278 Open Data portals

http://data.gv.at/
https://open.wien.gv.at/site/open-data/
http://data.wu.ac.at/
https://www.europeandataportal.eu/
https://data.wu.ac.at/portalwatch

Question

Question.Question.
What should you consider if you use What should you consider if you use "public""public" datasets datasets

Consuming "public" datasets
Public does not necessarily mean free

Many public datasets come with certain restrictions of what one is allowed to do with the data.

The data license (if available) typically specifies the following questions:

Is it allowed to reuse the data in my project/application?

Is it allowed to merge the dataset with other datasets?

If it is allowed, with what other licenses can the data be merged

Is it allowed to modify the dataset (e.g. remove or transform values)?

Notice.Notice.
More about licenses of datasets in SBWL3More about licenses of datasets in SBWL3

