Data cleaning and preparation (Basics)

Axel Polleres
Dr. Stefan Sobernig

20 October 2020

Unit3

Unit3

Data cleaning and preparation:

e Data inspection (structure, interpretation)

Data transformation (incl. reshaping)

Data scanning (incl. sniffing)

Data filtering

Data sorting

Data aggregation:
1. grouping

2. descriptive statistics

"Bread and Butter" for data scientists...

Cleaning & preparation

e Importance of cleaning & preparation follows from answering:

@]

How to describe datasets (data structure and data semantics)?

What are common anomalies in datasets?

(©)

(@)

How to best reshape the data to facilitate analysis?

©)

(How computationally expensive are the underlying procedures (transformation, filtering, sorting)?)

o (How scalable are the underlying procedures to really large datasets?)

This is where most of the effort in data-science projects is spent, repeatedly (+80%)

Cleaning & Preparation

Question.
Discuss: How would you describe the following two synthetic data sets?

treatmenta treatmentb

John Smith _ 2
Jane Doe 16 11
Mary Johnson 3 1

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

Cleaning & Preparation

Question.
Discuss: How would you describe the following two synthetic data sets?

treatmenta treatmentb

John Smith _ 2
Jane Doe 16 11
Mary Johnson 3 1

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

e layout?

Cleaning & Preparation

Question.
Discuss: How would you describe the following two synthetic data sets?

treatmenta treatmentb

John Smith _ 2
Jane Doe 16 11
Mary Johnson 3 1

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

e rOWS?

Cleaning & Preparation

Question.
Discuss: How would you describe the following two synthetic data sets?

treatmenta treatmentb

John Smith _ 2
Jane Doe 16 11
Mary Johnson 3 1

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

e columns?

Cleaning & Preparation

Question.
Discuss: How would you describe the following two synthetic data sets?

treatmenta treatmentb

John Smith _ 2
Jane Doe 16 11
Mary Johnson 3 1

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

e |labels?

Cleaning & Preparation

Question.
Discuss: How would you describe the following two synthetic data sets?

treatmenta treatmentb

John Smith _ 2
Jane Doe 16 11
Mary Johnson 3 1

John Smith Jane Doe Mary Johnson

treatmenta — 16 3
treatmentb 2 11 1

e cells? different types of information?

Running example: EUROSTAT Urban audit
 Demographic data on European cities taken from EUROSTAT (1990-2016).
 Read more at Urban Audit (Navigate the database)

e TSV at URL: lecturevooks/unit3/data/urb_cpopl. tsv list of European cities (city/country), population counts, and demographic
iIndicators (gender, age groups).

Question.
How do you inspect this dataset? How do you characterize this dataset? What do we see when we look at this dataset?

http://ec.europa.eu/eurostat/statistics-explained/index.php/Statistics_on_European_cities#Cities_.28Urban_Audit.29
https://ec.europa.eu/eurostat/web/cities/data/database

Right questions at the right time
Questions we could ask right now:

1. Which one is the biggest city?

2. What are the (most recent) populations per country?

3. Which ones are the 10 biggest cities?

4. What was the population of the city with the code AT004C1 in 20147
5. What was the population of the city named "Innsbruck" in 20157

6. ...

..., but we don't go there just yet

Interpretation of the data structure (1)
Consider first the following key notions:

o Dataset: Collection of values which describe data objects (e.g., units of observation) according to certain variables (a.k.a. attributes).

Values can be numeric ("numbers") or categorical ("strings").

Variables holding numeric values on data objects are quantitative variables.

Variables holding categorical values on data objects are qualitative variables.

Values are mapped to variables (attributes) of a data object via a (measurement) scale.
o numeric values: interval, ratio

o categorical values: nominal, ordinal

Nominal, Ordinal, Interval, Ratio?

https://www.statisticshowto.datasciencecentral.com/nominal-ordinal-interval-ratio/

Interpretation of the data structure (2)
e In order to interpret structured data, we want values organized in two ways:
o Every value belongs to a variable of a data object (observation)
o A data object (observation) contains all values measured on the same unit of observation across all variables.
» Variables can be further discriminated by their roles in the analysis:
o fixed variables ("dimensions"), in particular: identifier variables (or: "key attributes")
o measured variables

o derived variables (e.g., mediators)

Interpretation of the data structure (3)

naine trt

result

John Smith
Jane Doe

Mary Johnson

John Smith
Jane Doe

Mary Johnson

oo T REBE

» Six observations
e Three variables: person, treatment, result
e 18 values (6 times 3)
e Types of variables:
o Person: nominal, fixed (identifier), three possible values
o Treatment. nominal, fixed (identifier), two possible values (a, b)

o Result: interval, measured, six possible values (incl. missing value, NA)

Running example: EUROSTAT Urban Audit

CITIES,INDIC UR\TIME 1980 1801 1992 1993 1994 1995 1996 1997 1998 .. 2007 2008 2000 2010 2011 2012 2013 2014 2015 2016
0 9 10 10 10 10 10 10 10 10 1 10 1w 11 11 1111
BE.DE1001V . 986 021 068 100 130 143 170 192 .. 584 666 753 839 000 094 161 203
975 997 319 631 574 047 226 264 534 BG6 080 905 638 850 642 992
1 aE001Ci DEjogry 964 954 951 950 949 951 948 950 953 1031 1048 1088 1089 1136 1159 1174 1183
' 385 045 217 339 070 580 122 597 175 215 491 532 538 778 448 624 841
2 SEoooCt DEfogry 470 467 465 465 462 459 455 453 449 466 472 477 483 498 507 512 513
' 348 518 783 102 880 072 852 030 745 203 071 936 505 473 368 230 915
3 ceooact Defogry 230 230 230 220 228 227 226 225 224 235 237 240 243 248 249 249 251
' 543 246 232 821 490 483 464 469 545 ¢ 143 250 049 366 358 205 754 984
4 AEo0dct DEjogry 208 208 206 207 206 206 205 204 203 201 201 202 202 204 204 204 203
' 779 214 903 045 898 491 591 899 853 550 593 234 598 150 762 826 640
5 196 196 196 195 192 189 188 365 367 369 371 377 379 382 382
BEOOSCT.DET00TV gop ' ap3 B32 389 393 ' 510 568 741 612 487 880 263 978 009 637
6 17 117 116 116 116 116 115 115 115 16 117 116 116 117 117 118 117
BEOO6CT.DE100TY 4en pg3 717 871 724 273 815 500 573 082 073 960 741 260 617 145 886

7 | | | | | | | | . 107 107 108 108 110 110 111 111
BEOO7C1,DE1001V : ' : ' : ' : ' © ' G853 939 514 G50 175 753 224 348

8 95 97 98 98 98
BEOOBGC1,DE1001V : : - - - ! - ! D : : “ 483 270 D56 119 591

9 91 g2 893 94 95
BECOODSC1,DE100TV . : : : - ; - - S - - © 788 721 498 316 357

What's wrong/inconvenient about this dataset?

Running example: EUROSTAT Urban Audit

Question.
How would you describe the Urban Audit dataset "./data/urb_cpopl.tsv" using these key notions? What are problems that make describing the dataset
difficult? What's missing?

1. indic_ur,cities\time -> AT,DE1001V, AT001C1,DE1001V
1. Indicators such as "population” use particular codes, e.g. DE1001V stands for "Population on the 1st of January, total"
= indicator codes area available as another CSV at ./data/indic_ur.csv
2. Cities use particular codes... The codes are available in another file as RDF or as CSV
= CSV ./data/cities.csv list of cities incl their codes and names.
3. Countries use I1SO two-letter codes, e.g. available on datahub.io

= CSV ./data/iso_3166_2_countries.csv list of countries and country codes.

2. missing-value notation (NA, ":")

3. -> integers, BUT: 72959 b

https://datascience.ai.wu.ac.at/ws20/dataprocessing1/data/indic_ur.csv
http://dd.eionet.europa.eu/vocabulary/eurostat/cities/
http://dd.eionet.europa.eu/vocabulary/eurostat/cities/rdf;jsessionid=5AF9B4AF77C5DADF55069F856234E145
http://dd.eionet.europa.eu/vocabulary/eurostat/cities/csv;jsessionid=5AF9B4AF77C5DADF55069F856234E145
https://datascience.ai.wu.ac.at/ws20/dataprocessing1/data/cities.csv
https://datahub.io/de/dataset/iso-3166-1-alpha-2-country-codes/resource/9c3b30dd-f5f3-4bbe-a3cb-d7b2c21d66ce
https://datascience.ai.wu.ac.at/ws20/dataprocessing1/data/iso_3166_2_countries.csv

Data transformation (1): Overview
Data transformation involves:

1. Modifying values contained in given variables and/ or
2. Adding observations/values and variables (e.g., variables taken from additional datasets, values from previous observations) and/ or

3. Reshaping the dataset (i.e., its layout)

Note: Permitted (value) transformations are constrained by the types of variables.

Data transformation (2): Goals
Datasets ("in the wild"):

e values may not be eligible to run the intended checks and value-based operations (e.g., numeric operations)

e may need you to to reshape the data layout to proceed with data preparation (scanning, filtering, sorting)
Some examples: When a dataset is consumed from a datasource as raw strings:

e it does not allow for number operations (e.g "5"+"5" 1="10")
e it does not allow for comparison or sorting (e.g. "5" =5, "11">"2", "2016-10-11" vs "11-10-2016")
e it does not allow for splitting & combining variables

e it does not allow for combining datasets (e.g., mixed letter cases as in "Wien" vs. "wien")

Data transformation (3): Value types

Let us first take a look at data types and how we can handle them in Python.

Python has the following "built-in", bit-representational ("primitive") datatypes:

e Numerical types: int, float, complex
e Boolean
e String (I.e., sequences of Unicode characters)

e (Collections: lists, tuples, dictionaries)
Other (structured) data types:

e Date, Datetime

e URL

Data transformation (4): Value types

Any (planned) transformations might need introspection:

type(variable)
#e.g.

>>> type(5)
<class 'int'>

isinstance(x, t) //returns true if x 1s of type t, else false

#e.q.
>>> isinstance(5, int)
True

ATTENTION: Not all values in a column may be of the same type!

Data transformation (5): Number conversions

int (x) # Return an integer object constructed from a number or string Xx
float (x) # Return a floating point number constructed from a number or string X.

Examples

>>>float (" -12345\n")
-12345.0

>>> int(2.0)

2

Data transformation (6): Truth (boolean) values

bool(Xx)
Return a Boolean value, i.e. one of True or False. x is converted using the standard truth testing procedure

>>>p0o0l(0)
False
>>>po0ol(10)
True

Data transformation (7): Truth-value checks

Any object can be tested for truth value, for use in an if or while condition or as operand of the Boolean operations below. The following values are
considered false:

None

False

zero of any numeric type, for example, 0, 0.0, Oj.

any empty sequence, for example, ", (), [].

any empty mapping, for example, {}.

Instances of user-defined classes, if the class definesa __bool () or __len_ () method, when that method returns the integer zero or bool
value False. [1]

All other values are considered true — so objects of many types are always true.

Data transformation (7): Date/ datetime values

» Python offers with several options (modules) to deal and work with dates and datetime information, allowing for parsing, converting,
comparing, and manipulating dates and times

o Official module

Available datetime types:

date (year, month day)

time (hour, minute, second, microsecond)

datetime (year, month, day, hour, minute, second, microsecond)

timedelta: A duration expressing the difference between two date, time, or datetime

tzinfo: dealing with time zones

timezone: dealing with time zones

https://docs.python.org/3/library/datetime.html

Data transformation (8): Date/datetime values

The datetime.strptime() class method creates a datetime object from

e a string representing a datetime and from

e a corresponding format string

>>> from datetime import datetime

>>> text = '2012-09-20'

>>> datetime.strptime(text, '%Y-%m-%d')
datetime.datetime(2012, 9, 20, 0, 0)

See the online documentation for a full list of variables for the string format

https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior

Data transformation (9): Date/datetime values

The standard datetime Python module does not automatically detect and parse date/time strings and still requires to manually provide the format/
pattern string.

Options with (some) auto-detection:

o dateparser provides modules to easily parse localized dates in almost any string formats commonly found on web pages.

>>> import dateparser
>>> dateparser.parse('12/12/12")
datetime.datetime(2012, 12, 12, 0, 0)

» The dateutil module provides powerful extensions to the standard datetime module, available in Python.

>>> from dateutil.parser import parse
>>> parse('"Today 1s January 1, 2047 at 8:21:00AM", fuzzy_with_tokens=True)
(datetime.datetime(2011, 1, 1, 8, 21), (u'Today is ', u' ', u'at "))

Notice.
lICareful, such libraries might not necessarily detect the correct format but they cover properly 90% of all common cases.

https://pypi.python.org/pypi/dateparser
https://dateutil.readthedocs.io/en/stable/

Data transformation (10): String manipulation
e Converting (unicode) strings to some other value type is important to prepare and clean e.g. quantitative variables.
e Sometimes, transformations between strings is a preparatory step to a succesful type conversion.
o« Commonly, strings themselves are the needed value representation (e.g., in qualitative variables), but:
o ... they are not in the "right" or in an ambivalent format, e.g.:
= "100,50": comma as the decimal mark, octal strings, etc.
= "16-11-11" -> year-month-day vs, day-month-year ?
o ... they contain (intended or unintended) artifacts
= unintended: leading and trailing whitespace
= intended: super- or subscripts, suffixes (e.g., '72959 b' in the Urban Audit dataset)

» To clean up such strings, we need string manipulation methods

Data transformation (11): String manipulation
Python provides several functions to do to manipulate strings at the per-character level:

 functions to convert strings to upper or lower case

strip() to remove leading and ending whitespaces

slicing return a substring given one or two indices

split() to split strings given a "delimiter"

replace(o,r) to replace the occurrences of o with r

Mind the examples of assignment 1

For more functions, please see the official documentation for str objects

https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

Data transformation (12): String slicing

Problem.
How to "split" strings, or extract substrings? For instance, "AT,DE1001V" -> AT and DE1001V

Use [# : #] to get set of letter

word[O] #get one char of the word
word[0: 3] #get the first three char
word[-3:] #get the last three char

Keep in mind that python, as many other languages, starts to count from O!!

>>> word="AT,DE1001V"
>>> print(word[3:11])
DE10O1V

Data transformation (13): String slicing

Some useful helper functions for dealing with strings and to find "index positions"

>>> word = "Data Processing"
>>> print(word.count('a'))

§>> print(word.find("D"))

S>> print(word.index("Data"))
S>> print(word.index("Pro"))
§>> print(len("Data"))

4

>>> word="AT,DE1001V"
>>> print(word[3:3+len("DE1001V")])
DE1001V

Data transformation (14): Substring searchl/replace

str.replace(old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional
argument count 1is given, only the first count occurrences are replaced.

>>>word="Data Processing"
>>>word.replace('Processing', 'Science')
Data Science

>>> float("100,50".replace(",","."))

100.50

//while

>>>float("100,50")

ValueError: could not convert string to float: '100,50'

Data transformation (15): Testing for character classes

word

word.
word.
word.
word.
word.
word.
word.
word.
word.

= "Data Processing"
#check if all char are alphanumeric
#check 1f all char 1in the string are alphabetic

isalnum()
isalpha()
i1sdigit()
istitle()
isupper()
islower ()
i1sspace()
endswith('g')
startswith('D"')

#test
#test
#test
#test
#test
#test
#test

if
if
if
if
if
if
if

string
string
string
string
string
string
string

contailns
contalns
contalns
contailns
contalns
endswith

digits
title words
upper case
lower case
spaces

a g

startswith D

Data transformation (16): Reshaping and "Tidying"
* Reshaping can involve stacking or unstacking a dataset:
o Stacking (melting): Turning columns into rows; typically for processing and analysis.
o Unstacking: Turning rows into columns; typically for presentation.
o Atidy dataset is one in which the abstract interpretation of a dataset (value, variable, observation) is reflected 1:1 by its structure.
o Each variable forms a column.
o Each observation forms a row.

o Each type of data object (observation unit) forms a separate table.

https://vimeo.com/33727555

Data transformation (17): Reshaping and "Tidying"
Messy datasets result from violating these three main rules in different ways, for example:

e Column headers (labels) denote values, not variable names;

Multiple variables are stored in one column;

Variables are stored both in rows and columns;

Multiple types of data objects are stored in the same dataset (e.g., regions and cities across years);

A single observational unit is stored in multiple datasets (e.g., split sets by country);

Data transformation (18): Reshaping and "Tidying"

[aIne trt result

John Smith
Jane Doe

Mary Johnson

a
a 16
a

John Smith b 2
b
b

Jane Doe
Mary Johnson

Data transformation (19): Reshaping and "Tidying"

Question.
Discuss: Is the Urban Audit dataset tidy or messy?

CITIES,INDIC_URA\TIME 1990 1991 1992 1993 1994 1995 1996 1997 1998 .. 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
0 9 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11
BE,DE1001V : 886 021 D68 100 130 143 170 192 ... 584 B66 753 839 000 094 161 203
975 997 319 631 574 AT 226 264 534 BG6 080 905 638 850 @42 992
1 BECO1C1 DE1001V 964 954 951 950 949 951 948 950 953 1031 1048 1068 1089 1136 1159 1174 1183
' 385 043 217 339 070 580 122 897 175 77 215 491 532 538 Y78 448 B24 B4
2 BEOO2C1 DE1001V 470 4567 4865 465 462 4589 4535 453 449 466 472 477 483 488 207 12 513
' 349 518 783 102 BBO Q72 852 Q030 T4 U 203 oM 936 505 473 368 230 915
3 BEOOACT DE1001V 230 230 230 229 228 227 226 225 224 235 237 240 243 248 249 249 231
' 543 246 232 821 430 483 464 469 545 7 143 250 049 366 2 358 206 7h4 984
4 BE0O4C1 DE1001V 206 206 206 207 206 206 205 204 203 201 201 202 202 204 204 204 203
' 79 214 903 045 B98 491 591 B99 853 " 550 593 234 598 150 TE2 B26 640
5 196 196 186 195 192 189 188 365 367 369 a7 377 3vs 382 aaz2
BEOGSC1,DE100V 825 - 303 832 389 383 ' 510 568 T4 612 487 B8BO 2863 978 009 637
G "y M7 1Me M6 116 116 11s 115 118 116 117 116 116 117 117 118 117
BEOOAL1,DE100V 460 083 717 &M f24 273 815 500 573 7 982 073 959 T 260 617 145 BB6

7 , | , | , | , | . 107 107 108 108 110 110 111 111
BEQO7C1,DE100TV : ' : ' ' ' : ' ‘™ B3 09389 514 050 175 753 224 348
8 95 97 98 98 98
BEOOSC1,DE1001V : . ; . : - : - I - - RN R

9 9 92 93 94 95
BEOOSG1,DE1001V : : - : - : - - Do - : “ 788 721 498 16 357

Data scanning (1)

Scanning involves reading-in and processing a dataset in piecemeal manner, e.g.:

observation by observation (in a tidy dataset)

row by row (in a messy dataset)

variable by variable (in a tidy dataset)

column by column (in a messy dataset)

value by value (per row/column, per observation/variable)

Python example ("row by row"):

Data scanning (1)

Scanning involves reading-in and processing a dataset in piecemeal manner, e.g.:

observation by observation (in a tidy dataset)

row by row (in a messy dataset)

variable by variable (in a tidy dataset)

column by column (in a messy dataset)

value by value (per row/column, per observation/variable)

Python example ("row by row"):

with open('./data/urb_cpopl.tsv', 'r') as f:
rows = f.readlines()
for eachRow 1n rows:

print(eachRow)

Data scanning (2)
For a given dimension (e.g., rows), scanning may be used to inspect on:

« the "head" of a dataset

 the "tail" of a dataset

e a "sample" (subset, slice) of a dataset
o random vs. non-random

o ordered vs. unordered

Data sniffing
"*Sniffing*" involves detecting in a guided, semi-automated manner:

» Details of a dataset layout, in particular:

headers

O

row labels

o

o

column separators

dimensions

O

e The data types of column values, e.g.:
o Are columns homogeneous or heterogeneous?
o Auto-detection of datetime formats

» Sniffing requires means of data scanning

Rudimentary "sniffing" example using Python:

Data sniffing

"*Sniffing*" involves detecting in a guided, semi-automated manner:

» Details of a dataset layout, in particular:

headers

O

row labels

o

o

column separators

dimensions

O

e The data types of column values, e.g.:
o Are columns homogeneous or heterogeneous?
o Auto-detection of datetime formats

» Sniffing requires means of data scanning

Rudimentary "sniffing" example using Python:

with open('./data/urb_cpopl.tsv', 'r') as fT:
rows = f.readlines()
c=0

N=10
for eachRow in rows:

print('Number of ":":',eachRow.count(':"'))
print('Number of TABs:',eachRow.count('\t'))
c+=1

if ¢ > N: break

Data filtering (1)

e Filtering: Removing or subsetting data objects (observations) based on a filter condition.

 Filtering can be considered as a conditional scanning.

Data filtering (2): Python basics

Filtering lists:

L=[0,1,2,-1,4,-6]
Lfiltered=][]
for 1 in L:
if 1>0:
Lfiltered.append(1)

Lfiltered=[1 for 1 in L 1if 1>0]

Data filtering (3): Python basics

Filtering nested lists:

L= ['a',0],['b",2],['c",2],['d",-1],["e", 4], ['T",-6]]
Lfiltered=][]
for 1 1in L:
if 1[1]>0:
Lfiltered.append(1)

Lfiltered=[1 for 1 in L 1if 1[1]>0]

Data filtering (4): Python basics

Filtering dictionaries:

L=[{'a':0},{'b":1},{'c':2},{'d":-1},{'e':4},{ ' :-6}]
Lfiltered=][]
for d in L:
for k,v in d.items():
it v>0:
Lfiltered.append(d)

[1 for 1 in L for k,v in i.items() 1f v > 0]

Data filtering (5): Applications
Data filtering has many applications:

1. "search" can be seen as filtering

2. focusing on only the relevant parts of the data

3. eliminating unnecessary content (e.g., removing unwanted data-object types in reshaping)
4. removing content which cannot be processed (e.g., structurally missing values)

5. reducing amount of data to to be processed at once, per job (chunking data)

Data filtering (6): Urban-audit dataset
» Recall: We got multiple variables in the dataset.

e Task: Reduce it to one measure variable (population count)

1. Observe: indicator-identifier,2-letter-ISO-country-code in the first column

2. The identifier for population-count variable is DE1001V

Modify the scanning previous example to include a (filter) condition:

with open('./data/urb_cpopl.tsv', 'r') as f:
rows = f.readlines()
for eachRow 1n rows:

1f (eachRow[0:7] == 'DE1001V')
print(eachRow)

Data filtering (6): Urban-audit dataset
» Recall: We got multiple variables in the dataset.

e Task: Reduce it to one measure variable (population count)

1. Observe: indicator-identifier,2-letter-ISO-country-code in the first column

2. The identifier for population-count variable is DE1001V

Modify the scanning previous example to include a (filter) condition:

with open('./data/urb_cpopl.tsv', 'r') as f:
rows = f.readlines()
for eachRow 1n rows:

1f (eachRow[0:7] == 'DE1001V')
print(eachRow)

Question.
How could this be further improved?

Data filtering (6): Urban-audit dataset
» Recall: We got multiple variables in the dataset.

e Task: Reduce it to one measure variable (population count)

1. Observe: indicator-identifier,2-letter-ISO-country-code in the first column

2. The identifier for population-count variable is DE1001V

Modify the scanning previous example to include a (filter) condition:

with open('./data/urb_cpopl.tsv', 'r') as f:
rows = f.readlines()
for eachRow 1n rows:

1f (eachRow[0:7] == 'DE1001V')
print(eachRow)

Question.
How could this be further improved?

o Observe: The indicators in the file urb_cpopl.tsv are sorted and DE1001V are the first indicators appearing!

Data filtering (6): Urban-audit dataset
» Recall: We got multiple variables in the dataset.

e Task: Reduce it to one measure variable (population count)

1. Observe: indicator-identifier,2-letter-ISO-country-code in the first column

2. The identifier for population-count variable is DE1001V

Modify the scanning previous example to include a (filter) condition:

with open('./data/urb_cpopl.tsv', 'r') as f:
rows = f.readlines()
for eachRow 1n rows:

1f (eachRow[0:7] == 'DE1001V')
print(eachRow)

Question.
How could this be further improved?

e |tis important to inspect the data before processing it!

Data filtering (7): Costs

Question.
How expensive is it to do filtering?

e For every filtering operation you need to do one scan...
e ... but several conjunctive filtering conditions can be combined (keyword: and) in one scan, e.g.
i1f (eachRow[0:7] == 'DE1001V' and eachRow[8:10] == 'AT')

e ... Sometimes (e.g when file is sorted, or when you search only for a single result) you can stop before having to scan the whole file!
(keyword: break)

Data sorting (1)
e Sorting: Changing the order of data objects (observations) depending on the ordinal values of one or several of their variables (attributes).
 In-place sorting: Python lists have a built-in list.sort() method that modifies the list in-place.
e QOut-place sorting: There is also a sorted() built-in function that builds a new sorted list from an iterable.

e See also the official documentation

https://docs.python.org/3/howto/sorting.html

Data sorting (2): Basics

sorted([5, 2, 3, 1, 4])

[1, 2, 3, 4, 5]

the parameter 'reverse' can be set for descending order:
sorted([5, 2, 3, 1, 4], reverse = True)

[5, 4, 3, 2, 1]

a =[5 2,3, 1, 4]
a.sort()
a

Data sorting (3): List of lists

1=1[[e, 21, '"f'], [4, 2, 't'], [9, 4, 'afsd']]
1.sort(key=lambda x: x[2])

print(l)

[[9, 4, 'afsd'], [0, 1, 'f'], [4, 2, "t']]

Data sorting (4): Dictionaries by key
» Note that dictionaries are typically unordered.

e S0 the output dictionary must be an order-preserving one: OrderedDict

orig = {2: 3, 1: 89, 4: 5, 3: 0}

from collections import OrderedDict

out = OrderedDict(sorted(orig.items(), key=lambda t: t[0]))
print(out)

Data sorting (5): Dictionaries by value

orig = {"aa": 3, "bb": 4, "cc": 2, "dd": 1}

from collections import OrderedDict

out = OrderedDict(sorted(orig.items(), key=lambda t: t[1]))
print(out)

Data sorting (6): List of tuples

student_tuples = |
('john', 'A', 15),
('jane', 'B', 12),
('dave', 'B', 10),
]
sorted(student_tuples, key=lambda student: student[2])
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]

Data filtering and sorting: EUROSTAT Urban Audit

Question.
Discussion: Which of the following problems needs filtering? Which one needs sorting?

1. Which one is the biggest city?

2. What are the (most recent) populations per country?

3. Which ones are the 10 biggest cities?

4. What was the population of the city with the code AT004C1 in 20147
5. What was the population of the city named "Innsbruck" in 20157

6. How many cities per country does that dataset contain?

7. Which country/ies has the most cities listed?

8. Which city/ies grew fastest over the past 10 years?

Data aggregation (1)
e Aggregation: Collapsing multiple values into a single value by

1. grouping values by certain variables or variable levels

2. computing aggregates of the so formed value groups.

e Objective:
o Compress datasets to allow more expensive analysis steps (less memory or processing time)
o Change in scope or in scale of the analysis, by presenting a high-level view on a dataset
o Data aggregates are more stable than individual observations (prediction, variance).

e There are several ways to group items in Python.

1. use a dictionary (esp. defaultdict)
2. (use itertools groupby)

3. (pandas)

https://docs.python.org/3/library/collections.html#collections.defaultdict

Data aggregation (2): Dictionary-based grouping

data = [

['Vienna', 'Austria',11,12,13], ['Salzburg', 'Austria',12,22,23],
| 'Stuttgart', 'Germany',12,22,23], ['Berlin', 'Germany',12,22,23],
| 'Paris', 'France',12,22,23]

]

groupby={}
for item 1in data:
group=item[1]
1f group not 1in groupby:
groupby[group]=[]
groupby[group].append(item)

print(groupby)

from collections import defaultdict

groupby = defaultdict(list)

for row 1n data:
groupby[row[1]].append(row)

Data aggregation (3): Dictionary-based grouping

Austria

['Vienna', 'Austria', 11, 12, 13], ['Salzburg', 'Austria', 12, 22, 23]]
Germany
['Stuttgart', 'Germany', 12, 22, 23], ['Berlin', 'Germany',6 12, 22, 23]
France

[['Paris', 'France',6 12, 22, 23]]

Data aggregation (4): Dictionary-based grouping

data = [("animal", "bear"), ("animal", "duck"), ("plant", "cactus"), ("vehicle", '"speed boat"),
("vehicle", '"school bus'")]

from collections import defaultdict

groupby = defaultdict(list)

for row 1n data:
groupby[row[0]].append(row[1])

print(groupby.items())
for key, values 1n groupby.items():
for thing in values:
print("A "+thing+" 1is a(n) "+key)
print(" ")

A bear 1s a(n) animal.
A duck 1is a(n) animal.

A cactus 1s a(n) plant.

A speed boat 1s a(n) vehicle.
A school bus is a(n) vehicle.

Data aggregation (5): Computing groupwise aggregates

o Typical tasks you want to do on lists or on groups: provide summary descriptors (statistics).

The kind of summary descriptor computable depends on the variable type (quantitative, qualitative)

Frequency: Counting the elements contained in a group (qualitative variables; absolute/relative)

Location:
o mean and median (quantitative variables)

o mode: The value of the highest frequency (qualitative variables)

Spread: range and variance (quantitative variables)

Data aggregation (6): Computing groupwise aggregates

quant = [['a’, 5], ['a", 1], ['pb", 1], ['a’, 2], ['b",3], ['b",1], ['a’,4]]

from collections import defaultdict

grouped = defaultdict(list)

for row 1n quant:
grouped[row[0]].append(row[1])

print(grouped.items())

{i: len(v) for i,v 1n grouped.items()}
{1i: sum(v) for 1i,v 1n grouped.items()}
from statistics import mean

{1i: mean(v) for 1i,v 1n grouped.items()}

from statistics import median
{1: median(v) for 1,v 1n grouped.items()}

Data aggregation (6): Computing groupwise aggregates
qual =['a', 'c¢', 'a', 'c', 'b', 'e', 'a', 'c', 'b', 'e','b', 'e',

from collections import defaultdict
freq = defaultdict(int)
for el in qual:

freg[el] += 1

print({i: v/len(qual) for 1,v in freqg.items()})

from statistics import mode
mode (qual)

Data filtering and sorting: EUROSTAT Urban Audit

Question.
Discussion: Which of the following problems needs aggregation?

1. Which one is the biggest city?

2. What are the (most recent) populations per country?

3. Which ones are the 10 biggest cities?

4. What was the population of the city with the code AT004C1 in 20147
5. What was the population of the city named "Innsbruck" in 20157

6. How many cities per country does that dataset contain?

7. Which country/ies has the most cities listed?

8. Which city/ies grew fastest over the past 10 years?

9. What is the average city population per country?

Excursion: Data filtering, sorting and aggregation made easy with Pandas:

e So far, we have looked into how filtering, sorting, and aggregation can be done in Python on plain structured data (e.g. CSV) files.

o Pro:

= this way, we can deal with any, even problematic files and have full control about errors

= sometimes we can even be very efficient and don't have to read the whole file!

o Con:

= tedious, a lot of code

Pandas is package/library for "Pragmatic Python for high performance data analysis", which offers very efficient and convenient handling for
Tabular data in so called DataFrames.

 In short, Pandas offer a lot of what you can do in R with Data Frames within Python.

» together with Python's many other packages and low level Data Wrangling capabilities Pandas offer a great option to speed up your Data
Wrangling pipeline development!

WARNING: We do not recommend to rely solely on Pandas just yet already, since it is more obscure than "pure" Python... but we will exemplify
Pandas in a separate notebook: lecturebooks/unit3/03_pandas_intro.ipynb

https://pypi.org/project/pandas/
https://www.slideshare.net/wesm/a-look-at-pandas-design-and-development

References

 Pang-Ning Tan, Michael Steinbach, Vipin Kumar (2006): "Introduction to Data Mining", Chapter 2: "Data", Pearson.

« Hadley Wickham (2014): "Tidy data", The Journal of Statistical Software (59), DOI: 10.18637/jss.v059.i10

http://dx.doi.org/10.18637/jss.v059.i10

