
Data storage & Persistence
Axel Polleres

10 November 2020

Unit 6: Data storage & Persistence

Why you need persistence?

Persisting in files vs. in a database system

Python and Persistence:

Persisting objects in files: Pickle

Persisting objects in a Relational Database

Working with Relational Databases Systems: SQLite

Connection to and loading data into and from a database system

Creating, Updating, Querying a Database

Querying data from a Relational Database

Slides: This unit is also available in a PDF format and as a single HTML Page

Readings:

Grus, J. (2015) Data Science from Scratch, O'Reilley, Chapter 23 (available via the WU library, EBSCO)

https://datascience.ai.wu.ac.at/ws20/dataprocessing1/unit6.html
https://datascience.ai.wu.ac.at/ws20/dataprocessing1/unit6.pdf
https://datascience.ai.wu.ac.at/ws20/dataprocessing1/unit6-plain.html
http://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=979529&site=ehost-live

Persistence

What is Persistence?
"In computer science, persistence refers to the characteristic of state of a system that outlives (persists more than) the process that created
it. This is achieved in practice by storing the state as data in computer data storage. Programs have to transfer data to and from storage devices
and have to provide mappings from the native programming-language data structures to the storage device data structures."

(Wikipedia's definition)

https://en.wikipedia.org/wiki/Persistence_(computer_science)

Why do we need Persistence?

Why do we need Persistence?

hand-over/data-interchange

Why do we need Persistence?

work with different tools that cannot simply be "pipelined"

hand-over/data-interchange

Why do we need Persistence?

several people work with data (in sequence)

hand-over/data-interchange

work with different tools that cannot simply be "pipelined"

Why do we need Persistence?

several people work with data (at the same time!)

hand-over/data-interchange

work with different tools that cannot simply be "pipelined"

several people work with data (in sequence)

Why do we need Persistence?

Note: you need to avoid accidential overwrite during parallel transactions (ACID!)

hand-over/data-interchange

work with different tools that cannot simply be "pipelined"

several people work with data (in sequence)

several people work with data (at the same time!)

Storing/persisting data to disc

Storing/persisting program internal data structures to disc
We will briefly cover the following methods:

writing to CSV (text)

writing to JSON (text)

using Pickle (binary)

All code snippets on the next slides are also available as notebook

Do you remember?

cityCodeFile="./data/cities.csv"
#Building the cityCode to Label map
cityCodeMap={}
with open(cityCodeFile) as f:
 csvfile = csv.reader(f)
 for i,row in enumerate(csvfile):
 cityCodeMap[row[3]]= row[1]

Storing/persisting data as CSV
Let's store the dictionary to a CSV file.

import csv
with open('cityNames.csv', 'w', newline='') as csvfile:
 writer = csv.writer(csvfile, delimiter=',')
 for cityCode, cityName in cityCodeMap.items():
 writer.writerow([cityCode, cityName])

The method writerow() expects a list of values. Each value in the list will be convert to its string representation and written to file.

Loading the data back into a dictionary requires to parse the file as CSV and build the dictionary again (see our code before).

Storing/persisting data as JSON
Another - more direct - way to persist our internal data structure is to store it to a JSON file.

import json
with open('data.json', 'w') as fp:
 json.dump(cityCodeMap, fp)

NOTE: Storing/persisting data as JSON
Storing and loading objects to and from JSON is normally fast and the preferable way.

Question.Question.
Why?Why?

HOWEVER :

NOTE: Storing/persisting data as JSON
Storing and loading objects to and from JSON is normally fast and the preferable way.

Question.Question.
Why?Why?

HOWEVER :

the json module handles JSON (JavaScript Object Notation), specified by RFC 7159

http://json.org/
https://tools.ietf.org/html/rfc7159.html

NOTE: Storing/persisting data as JSON
Storing and loading objects to and from JSON is normally fast and the preferable way.

Question.Question.
Why?Why?

HOWEVER :

That means that the following Python data types are performed and supported by default:

the json module handles JSON (JavaScript Object Notation), specified by RFC 7159

http://json.org/
https://tools.ietf.org/html/rfc7159.html

NOTE: Storing/persisting data as JSON
Storing and loading objects to and from JSON is normally fast and the preferable way.

Question.Question.
Why?Why?

HOWEVER :

dict, list, str, int, float, True, False, None

the json module handles JSON (JavaScript Object Notation), specified by RFC 7159

That means that the following Python data types are performed and supported by default:

http://json.org/
https://tools.ietf.org/html/rfc7159.html

NOTE: Storing/persisting data as JSON
Storing and loading objects to and from JSON is normally fast and the preferable way.

Question.Question.
Why?Why?

HOWEVER :

other data types, e.g. date, datetime, are not supported by default, i.e., they will not be preserved when storing and loading to/from a
JSON file! --> would require a custom JSONEncoder and JSONDecoder function

the json module handles JSON (JavaScript Object Notation), specified by RFC 7159

That means that the following Python data types are performed and supported by default:

dict, list, str, int, float, True, False, None

http://json.org/
https://tools.ietf.org/html/rfc7159.html

Storing/persisting data as PICKLE
Alternative: The pickle module implements binary protocols for serializing and de-serializing a Python object structure. That is, any Python data
structure can be "pickled"

import pickle

with open('data.pickle', 'wb') as f:
 # Pickle the 'data' dictionary using the highest protocol available.
 pickle.dump(cityCodeMap, f, pickle.HIGHEST_PROTOCOL)

Different protocols are supported.

with open('data.pickle', 'rb') as f:
 data=pickle.load(f)

https://docs.python.org/3/library/pickle.html#data-stream-format
https://docs.python.org/2/library/pickle.html#data-stream-format

To JSON or to Pickle?
There are fundamental differences between the pickle protocols and JSON (JavaScript Object Notation):

JSON is a text serialization format (it outputs unicode text, although most of the time it is then encoded to utf-8), while pickle is a binary
serialization format;

JSON is human-readable, while pickle is not;

JSON is interoperable and widely used outside of the Python ecosystem, while pickle is Python-specific;

JSON, by default, can only represent a subset of the Python built-in types, and no custom classes; pickle can represent an extremely large
number of Python types (many of them automatically; complex cases can be tackled by implementing specific object APIs).

Question.Question.
When should you use JSON and when Pickle as serialisation format?When should you use JSON and when Pickle as serialisation format?

see also official documentation

Example: let's work it through storing objects to files in a Notebook! 01_storing-loading-pickling-unpickling.ipynb

https://docs.python.org/3/library/pickle.html
https://datascience.ai.wu.ac.at/ws20/dataprocessing1/01_storing-loading-pickling-unpickling.ipynb

(Relational) Databases Systems

(Relational) Databases Systems

Question.Question.

(Relational) Databases Systems

Question.Question.

What is a database?What is a database?

(Relational) Databases Systems

Question.Question.

Why does a data scientist need databases?Why does a data scientist need databases?

What is a database?What is a database?

What is a (Relational) Database?

What is a Database?

A (potentially very large), integrated collection of data.

Typically the data models some real-world entities and their relations

But data could also be text/documents (e.g. abstract of the book, …) or binary (e.g. eBook in PDF, image of the cover), or semi-structured
data

A Database (Management) System, short DBMS is a software package designed to store and manage databases, e.g.

A relational DBMS (RDBMS) is a DBMS adhering to the relational model (cf. BIS I)

data (typically) stored in relations, i.e. in "tables"

Why does a data scientist need databases?

Why does a data scientist need databases?

persistent (on disk) storage of data and results of analyses, particularly

if data changes regularly

if several users concurrently work on the data

a lot o data is already stored in (relational) databases

Why does a data scientist need databases?

Why does a data scientist need databases?

persistent (on disk) storage of data and results of analyses, particularly

if data changes regularly

if several users concurrently work on the data

a lot o data is already stored in (relational) databases

But we can store and load data in/from files already!

Why does a data scientist need databases?

Why does a data scientist need databases?

persistent (on disk) storage of data and results of analyses, particularly

if data changes regularly

if several users concurrently work on the data

a lot o data is already stored in (relational) databases

Right, but that is indirect, if you can access the data directly via an API (often using the SQL language) from the DBMS

But we can store and load data in/from files already!

Why does a data scientist need databases?

Why does a data scientist need databases?

persistent (on disk) storage of data and results of analyses, particularly

if data changes regularly

if several users concurrently work on the data

a lot o data is already stored in (relational) databases

Persisting data in DBMS gets you lots of additional functionality for free...

But we can store and load data in/from files already!

Right, but that is indirect, if you can access the data directly via an API (often using the SQL language) from the DBMS

Why does a data scientist need databases?

Why does a data scientist need databases?

persistent (on disk) storage of data and results of analyses, particularly

if data changes regularly

if several users concurrently work on the data

a lot o data is already stored in (relational) databases

Question.Question.
What features does a DBMS support that you'd need to take care of in What features does a DBMS support that you'd need to take care of in your code otherwise?your code otherwise?

But we can store and load data in/from files already!

Right, but that is indirect, if you can access the data directly via an API (often using the SQL language) from the DBMS

Persisting data in DBMS gets you lots of additional functionality for free...

Why does a data scientist need databases?

Why does a data scientist need databases?

persistent (on disk) storage of data and results of analyses, particularly

if data changes regularly

if several users concurrently work on the data

a lot o data is already stored in (relational) databases

Question.Question.
What features does a DBMS support that you'd need to take care of in What features does a DBMS support that you'd need to take care of in your code otherwise?your code otherwise?

When storing/updating data?When storing/updating data?

But we can store and load data in/from files already!

Right, but that is indirect, if you can access the data directly via an API (often using the SQL language) from the DBMS

Persisting data in DBMS gets you lots of additional functionality for free...

Why does a data scientist need databases?

Why does a data scientist need databases?

persistent (on disk) storage of data and results of analyses, particularly

if data changes regularly

if several users concurrently work on the data

a lot o data is already stored in (relational) databases

Question.Question.
What features does a DBMS support that you'd need to take care of in What features does a DBMS support that you'd need to take care of in your code otherwise?your code otherwise?

When retrieving data?When retrieving data?

But we can store and load data in/from files already!

Right, but that is indirect, if you can access the data directly via an API (often using the SQL language) from the DBMS

Persisting data in DBMS gets you lots of additional functionality for free...

When storing/updating data?When storing/updating data?

(Relational) Databases Systems: main features 1/2
RDBMSs shield some functionality from the user, which you'd need to take care of yourself when storing all data in files:

concurrency (several users can read/write concurrently)

transaction management (sequences of reads and updates that belong together can be arranged to in a group)

(Relational) Databases Systems: main features 2/2
In particular: ACID

atomicity of transactions (transacitons executed in an all-or-nothing fashion)

consistency (only data consistent with the schema can be stored in the database)

isolation (concurrent users see their work "as if" they would be working alone)

durability (persistence on disk, you don't have to press the "save" button, recovery on error)

Plus DBMS offer efficient and declarative access to the data via a universal, *structured query language* (SQL):

filtering, sorting, grouping, aggregation ... can all be done directly in SQL, without additional (Python) code once the data is in an RDBMS.

the RDBMS provides efficient indexing techniques, for faster access of data in the database through SQL

a lot o data is already stored in relational databases, you can process it directly there in situ! (instead of processing a dumpfile)

https://en.wikipedia.org/wiki/ACID_(computer_science)

(Relational) Databases Systems: SQLite

SQLite: Overview
In today's lecture we use a popular Open Source database engine: SQLite

requires no server - Database is stored in a single file

no set-up or installation necessary

ACID-compliant, implements most of the SQL standard

can be embedded directly in programms

... Due to the SQL standard, working with other RDBMS (e.g. PostgreSQL) is pretty similar!

https://www.sqlite.org/
https://en.wikipedia.org/wiki/ACID_(computer_science)

SQLite: Resources

Install SQLite

Working with SQLite (Tutorial)

DB Browser for SQLite

SQLite & Python:

The sqlite3 Python library

other libraries for SQLite with Python

https://www.sqlite.org/download.html
http://www.sqlitetutorial.net/
http://sqlitebrowser.org/
https://docs.python.org/3/library/sqlite3.html
http://www.sqlitetutorial.net/sqlite-python/

SQLite: Creating a table

CREATE TABLE table (
column_name1 data_type(size) constraint,
column_name2 data_type(size) constraint,
column_name3 data_type(size) constraint,
....
);

Example SQLite:

CREATE TABLE `person` (
 `personID` INTEGER PRIMARY KEY AUTOINCREMENT,
 `name` TEXT NOT NULL,
 `PLZ` NUMERIC,
 `city` TEXT,
 `country` TEXT
);

SQLite: Inserting records in a table
Note: SQLite uses simplified data types. Other RDBMS provide more precise specification.

INSERT INTO table (column1,column2,...)
VALUES (value1,value2,...);

Example SQLite:

INSERT INTO person (personID, name, PLZ, city, country)
VALUES (1, "Peter", "1220", "Vienna", "Austria"),
 (2, "Jenny", "1220", "Vienna", "Austria");

SQLite: Updating records in a table
Note: SQLite uses simplified data types. Other RDBMS provide more precise specification.

UPDATE table
SET column_1 = new_value_1, column_2 = new_value_2 ...
WHERE search_condition;

Example SQLite:

UPDATE person
SET name="Claire", PLZ="1020"
WHERE personID=2;

SQLite: Deleting records from a table

DELETE FROM table
WHERE search_condition;

Example SQLite:

DELETE FROM person
WHERE name LIKE "C%";

SQLite: Querying Data

projection: filtering columns

selection: filtering columns

join: merging tables

Examples SQLite:

SELECT column1, column4
FROM table
WHERE search_condition;

SELECT name, city
FROM person
WHERE PLZ < 1000;

SQLite: Querying Data - Merging Data
Connecting multiple tables using a relationship between two of their attributes, typically the primary key of one table and a foreign key of another.

Examples:

SELECT person.name, data.total
FROM person, data
WHERE person.personID=data.personID
 AND data.year < 2000;

SELECT person.name, data.total
FROM person JOIN data ON person.personID=data.personID
WHERE data.year > 2000;

SQLite: Querying Data - Sorting
Note that many things we did on Python, can be done in SQL as well:

We saw already filtering (selection/projection) and merging (join)

Clauses ORDER BY (DESC), LIMIT

Example:

SELECT person.name, data.total
FROM person, data
WHERE person.personID=data.personID
ORDER BY name DESC
LIMIT 10 OFFSER 31;

SQLite: Querying Data - Grouping/Aggregation
You can also do grouping (using the keyword GROUP BY) and aggregation, e.g. counting.

Example:

SELECT person.name, SUM(data.total) as TotalSum
FROM person, data
WHERE person.personID=data.personID
GROUP BY data.year;

Other aggregation functions, except SUM: AVG, SUM, MIN, MAX, COUNT

SQL/RDB Disclaimer
We skipped a lot of stuff important for Relational Databases & SQL:

normal forms

how to define keys and integrity constraints in tables

how to define indexes to make SQL queries more efficient!

How to write more complex queries including computations, etc.

 Recommended courses: Database Systems (BSc) or Database Systems (IS Master)⇒

Python and SQLite
Example: let's work it through in an example in our Notebook! 02_Read+Write_in_a_Database_SQLite+Python.ipynb

https://datascience.ai.wu.ac.at/ws20/dataprocessing1/02_Read+Write_in_a_Database_SQLite+Python.ipynb

Summary: Python and SQLite (or another DBMS)

2 main reasons why you want to integrate SQLite into your (Python) data workflows:

Load data into Python for further processing

a whole database table, or

results of a complex SQL query

Store data into a database table, e.g.

persist data in a table

persisting complex data structures (Note that many databases also support persisting JSON, e.g. PostgreSQL)

enjoy advanced features: transactions, concurrency,...

https://www.postgresql.org/docs/current/static/functions-json.html

